首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five new coordination polymers, [Cd(1,2′-cy)0.5(bix)H2O]n (1), [Cd2(1,2′-cy)2(1,10′-phen)2(H2O)2] (2), {[Co(1,2-cy)(2,2′-bipy)(H2O)2]·2H2O}n (3) {[Cd(succ)(1,10′-phen)H2O]·H2O}n (4), and {[Cd(succ)(2,2′-bipy)H2O]·2H2O}n (5) (1,2-cy = 4-cyclohexene-1,2-dicarboxylate, succ = succinic acid, bix = 1,4-bis(imidazol-1-ylmethyl)benzene, 1,10′-phen = 1,10-phenanthroline, 2,2′-bipy = 2,2′-bipyridine), have been synthesized and characterized by single-crystallographic X-ray diffraction. Complex 1 shows a two-dimensional covalent layer structure. Complex 2 exhibits a two-dimensional supramolecular layer network composed from discrete fundamental units. Complex 3 exhibits a one-dimensional covalent chain-like structure, which further extends to a two-dimensional supramolecular structure with hydrogen bonding and π-π interactions respectively. Complexes 4 and 5 show three-dimensional supramolecular networks composed from one-dimensional chain-like covalent structures. Furthermore, the magnetic property of complex 3 and fluorescent properties of complexes 1, 2, 4 and 5 have also been studied.  相似文献   

2.
Two new methylmalonate-bridged copper(II) complexes with the formulas [Cu(3-Ipy)(Memal)(H2O)] (1) and [Cu(2,4′-bpy)(Memal)(H2O)] · 3H2O (2) [Memal = methylmalonate dianion, 3-Ipy = 3-iodopyridine, 2,4′-bpy = 2,4′-bipyridine] have been synthesized and characterized by X-ray diffraction. Both compounds crystallize in the monoclinic space group P21/n and Z = 4, with unit cell parameters a = 8.5874(13) Å, b = 7.1738(14) Å, c = 19.093(5) Å, β = 99.509(15)° in 1 and a = 17.375(4) Å, b = 7.3305(14) Å, c = 14.247(3) Å, β = 111.409(15)° in 2. The structures of 1 and 2 consist of zigzag chains of anti-syn carboxylate-bridged copper(II) ions running along the b direction. The pyridine-like ligands occupy one equatorial position of the copper environment avoiding the formation of the sheet-like arrangement observed in previously reported Memal complexes. The chains are grouped together in hydrophilic layers through hydrogen bonds and the layers are pillared through the 3-Ipy (1) and 2,4′-bpy (2) ligands which are stacked through π–π interactions involving alternatively aromatic ligands from two adjacent chains. Magnetic susceptibility measurements of both compounds in the temperature range 2–290 K show the occurrence of intrachain ferromagnetic interactions between the copper(II) ions [J = +2.66(2) cm?1 (1) and J = +2.62(2) cm?1 (2)].  相似文献   

3.
Seven Cd(II)–ferrocenesuccinate coordination complexes with the formulas [Cd(η2-FcCOC2H4COO)2(pbbbm)]2 (1), [Cd(η2-FcCOC2H4COO)(pbbbm)Cl]2 (2), [Cd(η2-FcCOC2H4COO)(pbbbm)I]2 (3), {[Cd(η2-FcCOC2H4COO)2(btx)2]2(CH3OH)0.5} (4), [Cd(η2-FcCOC2H4COO)2(bix)]2(H2O) (5), {[Cd(η2-FcCOC2H4COO)(bbbm)1.5Cl] · (CH3OH)0.5}n (6), and {[Cd(η2-FcCOC2H4COO)(mbbbm)Cl] · (H2O)2.75}n (7) [pbbbm = 1,4-Bis(benzimidazole-1-ylmethyl)benzene), btx = 1,4-bis(triazol-1-ylmethyl)benzene), mbbbm = 1,3-bis(benzimidazole-1-ylmethyl)benzene), bix = 1,4-bis(imidazol-1-ylmethyl)benzene, bbbm = 1,1-(1,4-Butanediyl)bis-1H-benzimidazole)] have been synthesized and characterized. Single-crystal X-ray analysis reveals that complexes 15 are all dimers and bridged by pbbbm, btx and bix, respectively. But the five complexes present some differences in their dimeric conformations, which can be ascribed to the impacts of adjuvant ligands and counter anions. In contrast to complexes 1–5, both 6 and 7 are of 1-D structures (with the same counter anions), and the former is double ladder-like structure only bridged by bbbm, while the latter is chain-like structure bridged by chlorine anions and adjuvant ligand mbbbm. Notably, various π–π interactions are found in complexes 17, and they have significant contributions to molecular self-assembly processes. The electrochemical studies of complexes 17 in DMF solution display irreversible redox waves and indicate that the half-wave potentials of the ferrocenyl moieties in these complexes are all shifted to positive potential compared with that of ferrocenesuccinate.  相似文献   

4.
《Solid State Sciences》2007,9(11):1006-1011
Three complexes, M2(bpy)2(bpdc)2·xH2O [M = Cu, x = 0; M = Zn or Cd, x = 2], have been hydrothermally synthesized by 1,1′-biphenyl-2,2′-dicarboxylic acid (H2bpdc) with 2,2′-bipyridine (bpy) to form binuclear molecules. In each, the two bpdc groups align the two opposing planar [M(bpy)]2+ cations. The molecules are connected by C–H⋯O hydrogen bonds, π–π stacking, and C–H⋯π interactions to form three dimensional supramolecular networks. Furthermore, at room temperature, complex 3 exhibits strong photoluminescence.  相似文献   

5.
Fluorescence properties of five 4-acyl pyrazolone based hydrazides (H2SBn) and their Fe (III) heterochelates of the type [Fe(SBn)(L)(H2O)]·mH2O [H2SBn = nicotinic acid [1-(3-methyl-5-oxo-1-phenyl-4,5-di hydro-1H-pyrazol-4yl)-acylidene]-hydrazide; where acyl = –CH3, m = 4 (H2SB1); –C6H5, m = 2 (H2SB2); –CH2–CH3, m = 3 (H2SB3); –CH2–CH2–CH3, m = 1.5 (H2SB4); –CH2–C6H5, m = 1.5 (H2SB5) and HL = 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid] were studied at room temperature. The fluorescence spectra of heterochelates show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been reported.  相似文献   

6.
《Polyhedron》2005,24(3):397-406
Four 4,4′-bipyridine α,ω-dicarboxylate coordination polymers Cu(bpy)(C5H6O4) (1), Zn(bpy)(C5H6O4) (2), Zn(bpy)(C6H8O4) (3) and Mn(bpy)(C8H12O4) · H2O (4) have been synthesized and structurally characterized by single crystal X-ray diffraction methods (bpy = 4,4-bipyridine, (C5H6O4)2− = glutarate anion, (C6H8O4)2− = adipate anion, (C8H12O4)2− = suberate anion). Their crystal structures are featured by dimeric metal units, which are co-bridged by 4,4′-bipyridine ligands and dicarboxylate anions such as glutarate, adipate and suberate anions to generate 2D layers with a (4,4) topology in 1, 2 and 4 as well as to form 3D frameworks in 3. Two 3D frameworks in 3 interpenetrate with each other to form a topology identical to the well-known Nb6F15 cluster compound. Over 5–300 K, the paramagnetic behavior of 4 follows the Curie–Weiss law χm(T  Θ) = 4.265(5) cm3 mol−1 with the Weiss constant Θ = −6.3(2) K. Furthermore, the thermal behavior of 3 and 4 is also discussed.  相似文献   

7.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

8.
《Comptes Rendus Chimie》2014,17(5):477-483
The ligand Hbpq = N-(8-quinolyl)pyridine-2-carboxamide) has been prepared using tetrabutylammonium bromide (TBAB) as an environmentally friendly reaction medium. Four new complexes of this ligand, [M(bpq)X] (M = Cu(II), X = SCN̄ (1), N3̄ (2); M = Ni(II), X = SCN̄ (3), N3̄ (4)), have also been synthesized and fully characterized. The crystal and molecular structures of [Cu(bpq)(NCS)]n (1) have been determined by X-ray crystallography. Copper(II) ion adopts a distorted square pyramidal (4 + 1) coordination in this complex. Hbpq ligand shows a strong emission at 500 nm in acetonitrile solution. The emission is quenched in the presence of copper(II) acetate, apparently because of the formation of [Cu(L)(OAc)(H2O)] complex. Introduction of nitric oxide (NO) into the acetonitrile solution at room temperature induces an increase in the fluorescence intensity, presumably due to the reduction of Cu(II) to Cu(I). This process is reversible and can form a basis for direct detection of NO.  相似文献   

9.
A novel series of 4,4′-bipyridine- and 1,2-bis(4-pyridyl)ethane-Cu(II) complexes were synthesized using a variety of amine ligands (DPA = di(2-pyridylmethyl)amine, Medpt = 3,3′-diamino-N-methyldipropylamine, Hbpca = bis(2-pyridylcarbonyl)amine, TPA = tris(2-pyridylmethyl)amine) and cyclen = 1,4,7,10-tetraazacyclododecane). Different complexes were obtained including mononuclear [Cu(cyclen)(4,4′-bipy)](ClO4)2 (1), dinuclear {[Cu(μ2-bpca)(4,4′-bipy)(H2O)]ClO4}2 (2), [Cu2(DPA)22-4,4′-bipy)(ClO4)4)]·H2O (3), [Cu2(cyclen)22-bpe)](ClO4)4 (4) and [Cu2(TPA)22-bpe)](ClO4)4 (5) and the 1-D polymer, {[Cu(Medpt)(μ2-4,4′-bipy)](ClO4)2}n (6). In the 16 samples, cooling up to 100 K produces only the expected, minor, changes in cell constants given no space group changes. Therefore, data for the 100 K structures are reported only. Single-crystal X-ray crystallography reveals the monodentate coordination of the 4,4′-bipy in 1 and 2, and the bridged nature of the di-pyridyl ligands in the dinuclear complexes 25 and in the polymeric complex 6. In this series, structures 36 consist of the 4,4′-bipy or bpe bridging the two Cu(II) centers, the coordination by the tri- or the tetra-N donors of the amine, and the ClO4? groups as counter ions in 46 complexes. In the complexes 36, the Cu···Cu distances across the bridged di-pyridyl ligands were found to be greater than 11 Å. The magnetic properties of complex 3 reveal no evidence for magnetic coupling between the two Cu(II) centers (J = ?0.58 cm?1).  相似文献   

10.
New Schiff base (H2L) ligand is prepared via condensation of o-phthaldehyde and 2-aminobenzoic acid in 1:2 ratio. Metal complexes are prepared and characterized using elemental analyses, IR, solid reflectance, magnetic moment, molar conductance, 1H NMR, ESR and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [MCl(L)(H2O)]·2H2O (where M = Cr(III) and Fe(III)); [M(L)]·yH2O (where M = Mn(II), Ni(II), Cu(II) and Zn(II), y = 1–2) and [M(L)(H2O)nyH2O (where M = Co(II) (n = y = 2), Co(II) (n = y = 1), Ni(II) (n = 2, y = 1). The molar conductance data reveal that all the metal chelates were non-electrolytes. IR spectra show that H2L is coordinated to the metal ions in a bi-negative tetradentate manner with NOON donor sites of the azomethine-N and carboxylate-O. The 1H NMR spectral data indicate that the two carboxylate protons are also displaced during complexation. From the magnetic and solid reflectance spectra, it was found that the geometrical structure of these complexes are octahedral (Cr(III), Fe(III), Co(II) and Ni(II)), square planar (Cu(II)), trigonal bipyramidal (Co(II)) and tetrahedral (Mn(II), Ni(II) and Zn(II)). The thermal behaviour of these chelates showed that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the ligand molecule in the subsequent steps. The biological activity data show that the metal complexes to be more potent/antibacterial than the parent Shciff base ligand against one or more bacterial species.  相似文献   

11.
Three new Cu(II) complexes with carboxylic ligand, namely {[Cu(qc)2(py)]·4H2O} (1), [Cu(qc)2(4,4′-bpy)] (2) and [Cu(pc)(2,2′-bpy)(H2O)]2·H2O (3) (Hqc = 3-hydroxy-2-quinoxalinecarboxylic acid, H2pc = 4-hydroxyphthalic acid, py = pyrazine) have been synthesized and characterized. In both 1 and 2, each Cu(II) ion is coordinated by two quinoxalinecarboxylate moieties in the equatorial plane and two 4,4′-bpy or pyrazine units provide coordination in the axial positions, thus, resulting in a 1-D polymeric chain structure. Complex 3 has a dimeric structure in which two Cu(II) cations are bridged by two deprotonated pc2? ligands and two 2,2′-bpy molecules. As heterogeneous catalysts, the title complexes showed high catalytic efficiency in the green oxidative polymerization of 2,6-dimethylphenol (DMP) to poly(1,4-phenylene ether) (PPE) in the presence of H2O2 as oxidant in water under mild conditions. Moreover, they allow reuse without significant loss of activity through four runs, which suggests that these catalysts are efficient, mild, and easily recyclable for the oxidative coupling of DMP. The preliminary study of the catalytic–structural correlations suggests that the coordination environment of the metal center plays an important role in the improvement of their catalytic efficiencies.  相似文献   

12.
Alkyl and arylplatinum complexes with 1,5-cyclooctadiene ligand, [PtR2(cod)] (R = Me, Ph, C6H4-p-CF3, C6F5), react with secondary phosphines, PHR′2 (R′ = i-Bu, t-Bu, Ph), to afford the mononuclear platinum complexes, cis-[PtR2(PHR′2)2] (1a: R = Me, R′ = i-Bu; 1b: R = Me, R′ = t-Bu; 1c: R = Me, R′ = Ph; 2a: R = Ph, R′ = i-Bu; 2b: R = Ph, R′ = t-Bu; 2c: R = R′ = Ph; 3a: R = C6H4-p-CF3, R′ = i-Bu; 3b: R = C6H4-p-CF3, R′ = t-Bu; 3c: R = C6H4-p-CF3, R′ = Ph; 4a: R = C6F5, R′ = i-Bu; 4c: R = C6F5, R′ = Ph) in 81–98% yields. Molecular structures of the complexes except for 1a, 1c and 2a were determined by X-ray crystallography. Complex 1b has a square-planar structure with Pt–C(methyl) bonds of 2.083(8) and 2.109(8) Å, while the Pt–C(aryl) bonds of 2bc, 3ac, 4a and 4c (2.055(1)–2.073(8) Å) are shorter than them. Thermal decomposition of 1b, 2ac, and 3ac releases methane, biphenyl or 4,4′-bis(trifluoromethyl)biphenyl as the organic products, which are characterized by NMR spectroscopy. The solid product of the thermal reactions of 2b and 2c were characterized as the metallopolymers formulated as [Pt(PR′2)2]n (5b: R′ = tBu; 5c: R′ = Ph), based on the solid-state NMR and elemental analyses.  相似文献   

13.
Two dinuclear molecule-bridged Cu(I) complexes, (μ-bpym)[Cu(PPh3)Cl]2 (1), [(μ-bpym)(CuL)2](ClO4)2·(CH3CN)2(H2O) (2) (bpym = 2,2′-bipyrimidine, L = (R)-(+)-2,2′-bis(diphenylphospho)-1,1′-dinaphthalene) have been synthesized and characterized. The molecular structures of the two new dinuclear compounds exhibit bridging of two copper(I) centers by the symmetrically bis-chelating bpym ligand. Intriguingly, compound 1 features a remarkable “intramolecular organic sandwich” configuration where the central 2,2′-bipyrimidine bridging ligand interacts in π/π/π fashion with two phenyl rings from the coligands above and below the central plane, while chiral compound 2 exhibits second-order nonlinear optical effect and temperature-dependent luminescence. Upon decreasing the temperature from 298 to 10 K, compound 2 shows a red light emission.  相似文献   

14.
The synthesis of new ruthenium-based catalysts applicable for both homogeneous and heterogeneous metathesis is described. Starting from the Hoveyda-Grubbs first generation (1) and the Hoveyda-Grubbs second generation (2) catalysts the homogeneous catalysts [RuCl((RO)3Si–C3H6–N(R′)–CO–C3F6–COO)(CH–o-O–iPr–C6H4)(SIMes)] (4: R = Et, R′ = H; 5: R = R′ = Me) (SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene) were prepared by substitution of one chloride ligand with trialkoxysilyl functionalized silver carboxylates (RO)3Si–C3H6–N(R′)–CO–C3F6–COOAg (3a: R = Et, R′ = H; 3b: R = R′ = Me). These homogeneous ruthenium-species are among a few known examples with mixed anionic ligands. Exchange of both chloride ligands afforded the catalysts [Ru((RO)3Si–C3H6–N(R′)–CO–C3F6–COO)(CH–o-O–iPr–C6H4)(SIMes)] (9: R = Et, R′ = H; 11: R = R′ = Me) and [Ru((RO)3Si–C3H6–N(R′)–CO–C3F6–COO)(CH–o-O–iPr–C6H4)(PCy3)] (8: R = Et, R′ = H; 10: R = R′ = Me). The reactivity of the new complexes was tested in homogeneous ring-closing metathesis (RCM) of N,N-diallyl-p-toluenesulfonamide and TONs of up to 5000 were achieved. Heterogeneous catalysts were obtained by reaction of 4, 5 and 811 with silica gel (SG-60). The resultant supported catalysts 4a, 5a, 8a11a showed reduced activity compared to their homogenous analogues, but rival the activity of similar heterogeneous systems.  相似文献   

15.
By control of mixed ligands with particular coordination sites, heterometallic coordination polymers, [Ln2(H2O)2Ag(C2O4)2(ina)3]n (Ln = Eu (1), Dy (2), Hina = isonicotinic acid) and {[LnAg(C2O4)(na)2]·2H2O}n (Ln = La (3), Tb (4), Hna = nicotinic acid), have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR, thermogravimetric analysis (TGA), and single-crystal X-ray diffraction. These coordination polymers feature 3D pillar-layered coordination frameworks constructed from two-dimensional (2D) lanthanide–carboxylate layers and Ag(ina) or Ag(na) pillars. It is interesting that the in situ decarboxylation of pyridine-2,3-dicarboxylic acid into nicotinic acid was observed. The luminescent properties of 1 and 4 were also studied.  相似文献   

16.
Using the polyfunctional ligand 2-phosphonethanesulfonic acid (H3L) a high-throughput (HT) study was started for the systematic investigation of the system SrCl2/H3L/NaOH/H2O. The HT experiment comprising 48 individual reactions were performed to systematically investigate the influence of pH of the starting mixture as well as the molar ratio Sr2+:H3L. Two new compounds SrH(O3P–C2H4–SO3) (1) and Sr3(O3P–C2H4–SO3)2(H2O)2 (2) were obtained and structurally characterized by single-crystal X-ray diffraction. The reaction products synthesized under hydrothermal conditions always contain traces of SrSO4, which are due to the decomposition of small amounts of the ligand. While compound 2 could only be obtained under hydrothermal conditions, the synthesis of 1 could be accomplished under milder reaction conditions and a reaction scale-up could be performed. Compound 1 crystallizes in a monoclinic system with space group C2/c (no. 15), a = 534.73(11) pm, b = 1648.7(3) pm, c = 825.43(17) pm, β = 105.34(3)°, V = 701.8(2)–106 pm3, Z = 4, R1 = 0.0268, and wR2 = 0.0642 for I > 2σ(I). Compound 2 crystallizes in a triclinic system with space group P-1 (no. 2), a = 700.97(14) pm, b = 1008.5(2) pm, c = 1274.8(3) pm, α = 97.63(3)°, β = 92.03(3)°, γ = 92.03(3)°, V = 843.7(3)–106 pm3, Z = 2, R1 = 0.0360, and wR2 = 0.0896 for I > 2σ(I). In the structure of compound 1 the phosphorous and sulfur atoms cannot be distinguished due to identical crystallographic positions. Thus, an averaged structure was obtained which is built up by edge-sharing SrO8 polyhedra that form infinite M–O–M chains. Compound 2 contains corner-, edge-, and face-sharing SrO8 polyhedra which form inorganic M–O–M layers. These M–O–M chains (1) and layers (2) are connected to a three-dimensional network by the –CH2CH2– group of the ligand, respectively. Additional characterization by thermogravimetric analysis and IR-spectroscopy for compound 1 is also presented.  相似文献   

17.
《Solid State Sciences》2007,9(11):1012-1019
Two novel inorganic–organic hybrid compounds composed of Keggin tungstocobaltate framework and cobalt(II)–N coordination complexes, K[Co(phen)2(H2O)]2[HCoW12O40]·2H2O (1) (phen = 1,10-phenanthroline) and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]·0.5H2O (2) (bipy = bipyridine), have been synthesized under hydrothermal conditions by directly using Keggin POMs as starting materials, which were characterized by elemental analyses, IR, TG analyses and X-ray single crystal diffraction. Crystal data for compound 1: C48H41Co3KN8O44W12, triclinic, space group P-1, a = 10.918(5) Å, b = 13.401(5) Å, c = 13.693(5) Å, α = 69.291(5)°, β = 71.568(5)°, γ = 78.421(5)°, V = 1768.9(12) Å3, Z = 1; for compound 2: C130H104Co7N26O83W24, orthorhombic, space group, C2/c, a = 46.839(9) Å, b = 14.347(3) Å, c = 26.147(5) Å, α = β = γ = 90°, V = 17,570(6) Å3, Z = 4. Compound 1 exhibits a pseudo-1D chainlike structure, in which potassium ions act as linkages of Keggin unit doubly grafted by [Co(phen)2(H2O)] complex. Compound 2 represents a [Co(2,2′-bipy)2(H2O)]2+ mono-grafted Keggin tungstocobaltate derivative with 1.5[Co(2,2′-bipy)3]2+ countercations. The cyclic voltammetric behavior of 1-CPE is similar to the parent 3-CPE, but the cyclic voltammetric behavior of CoII shows a little difference. Variable-temperature magnetic susceptibility measurement of compound 1 demonstrates the presence of antiferromagnetic interactions.  相似文献   

18.
Six organophosphine/phosphite stabilized N-silver(I) succinimide complexes of the type Ln · AgNC4H4O2 (L = PPh3; n = 1, 2a; n = 2, 2b; n = 3, 2c; L = P(OEt)3; n = 1, 2d; n = 2, 2e; n = 3, 2f) have been prepared by reacting [AgNC4H4O2], which can be synthesized from succinimide and excessive Ag2O in boiling water, with triphenylphosphine or triethylphosphite in dichloromethane under a nitrogen atmosphere. These complexes were obtained in high yields and characterized by elemental analysis, 1H, 13C{H} NMR, IR spectroscopy and thermal analysis (TG and DSC). The molecular structure of 2c has been determined by X-ray single crystal analysis, in which the silver atom is in a distorted tetrahedral geometry.  相似文献   

19.
《Polyhedron》2005,24(16-17):2242-2249
Two heterobimetallic coordination polymers, [Cu(2,4-pydc)2Mn(H2O)4]x (1) and [Cu(2,5-pydc)2Mn(H2O)2]x · 4xH2O (2), have been synthesized and structurally characterized by single crystal X-ray diffraction. Both compounds have extended 2-D sheet structures. In 1 the copper centers are linked in chains by double ligand bridges and these chains are cross-linked through the manganese coordination spheres and O–C–O bridges to form polymeric sheets. In 2 separate O–C–O bridged Cu and Mn chains are connected in an alternating array by additional ligand bridging to generate the overall 2-D structure. Analysis of magnetic data of 1 reveals that ferromagnetic exchange between the O–C–O bridged copper and manganese centers dominates the magnetic properties of this system. The magnetic data for 2 fit well to a model incorporating antiferromagnetic exchange in independent S = 1/2 and S = 5/2 linear chains with J(Cu) = −0.073 cm−1 and J(Mn) = −0.32 cm−1. Unlike the situation in 1, there is no evidence for heterometallic exchange. In both 1 and 2 the significant exchange occurs via O–C–O bridges. To study the effect of thermal dehydration on the magnetic properties of these systems, the compounds Cu(2,4-pydc)2Mn · H2O (1d) and Cu(2,5-pydc)2Mn · H2O (2d) were synthesized and studied.  相似文献   

20.
Reaction of Zn(NO3)2·6H2O with p-aminobenzoic acid in a 1:2 molar ratio under ethanol medium at room temperature affords a new three dimensional (3D) coordination polymer [Zn(PABA)2]·H2O (1) (PABA = p-aminobenzoic acid). Single-crystal X-ray diffraction reveals that 1 crystallizes in the orthorhombic system, space group P212121, a = 7.614(2), b = 11.133(3), c = 16.869(4). 1 adopts a 3D open framework with H2O molecules in the cavities. PABA, acting as bridging ligand as well as coordinating ligand, adopts a different coordination mode to bridge Zn atoms and form the 3D supramolecular structure which is further stabilized by N–H?O, O–H?O hydrogen bonding and π–π stacking interactions. Powder second-harmonic generation (SHG) efficiency measurement with Nd:YAG laser (1064 nm) radiation shows that the SHG efficiency of 1 is equivalent to KDP crystal. The present work also demonstrates that the framework of 1 is retained after removal of the guest H2O molecules, and the H2O molecules can be reintroduced into the framework, indicating that this complex may also be used to generate porous materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号