首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of RuTp(COD)Cl (1) with PR3 (PR3 = PPh2iPr, PiPr3, PPh3) and propargylic alcohols HCCCPh2OH, HCCCFc2OH (Fc = ferrocenyl), and HCCC(Ph)MeOH has been studied.In the case of PR3 = PPh2iPr, PiPr3 and HCCCPh2OH, the 3-hydroxyvinylidene complexes RuTp(PPh2iPr)(CCHC(Ph)2OH)Cl (2a) and RuTp(PiPr3)(CCHC(Ph2)OH)Cl (2b) were isolated.With PR3 = PPh2iPr and HCCCFc2OH as well as with PR3 = PPh3 and HCCCPh2OH dehydration takes place affording the allenylidene complexes RuTp(PPh2iPr)(CCCFc2)Cl (3b) and RuTp(PPh3)(CCCPh2)Cl (3c).Similarly, with PPh2iPr and HCCC(Ph)MeOH rapid elimination of water results in the formation of the vinylvinylidene complex RuTp(PPh2iPr)(CCHC(Ph)CH2)Cl (4).In contrast to the reactions of the RuTp(PR3)Cl fragment with propargylic alcohols, with HCC(CH2)nOH (n = 2, 3, 4, 5) six-, and seven-membered cyclic oxycarbene complexes RuTp(PR3)(C4H6O)Cl (5), RuTp(PR3)(C5H8O)Cl (6), and RuTp(PR3)(C6H10O)Cl (7) are obtained. On the other hand, with 1-ethynylcyclohexanol the vinylvinylidene complex RuTp(PPh2iPr)(CCHC6H9)Cl (8) is formed. The reaction of the allenylidene complexes 3ac with acid has been investigated. Addition of CF3COOH to a solution of 3ac resulted in the reversible formation of the novel RuTp vinylcarbyne complexes [RuTp(PPh2iPr)(C–CHCPh2)Cl]+ (9a), [RuTp(PPh2iPr)(C–CHCFc2)Cl]+ (9b), and [RuTp(PPh3)(C–CHCPh2)Cl]+ (9c). The structures of 3a, 3b, and 5b have been determined by X-ray crystallography.  相似文献   

2.
Olefin Metathesis for Metal Incorporation (OMMI) was used for the stoichiometric attachment of ruthenium to both small and large polyenes. The dinuclear complexes (PCy3)2C12RuCH(CHCH)nCHRu(PCy3)2Cl2 (n = 1, 2), were prepared by reacting 2 equiv. of the Grubbs first-generation catalyst (PCy3)2C12Ru(CHPh)) with 1 equiv. of the appropriate polyene (1,3,5-hexatriene for n = 1 and 1,3,5,7-octatetraene for n = 2). Use of excess hexatriene led to the formation of the monoruthenium complex (PCy3)2C12RuCHCH CHCHCH2. The mono- and di-ruthenium complexes exhibited marked differences in their spectroscopic and electrochemical properties, in addition to their ZE isomerization rates. Nucleophilic attack of PCy3 on the end CH2 of the mono complex was observed, leading to both isomerization and phosphonium products. Extending the OMMI strategy to the second-generation catalyst was also done, despite the reduced initiation rate. The more reactive catalyst (H2IMes)RuCl2(CHPh)(3-bromopyridine)2 allowed for ruthenium incorporation into polyacetylene, leading to the formation of polymers and oligomers with high ruthenium content.  相似文献   

3.
Reaction of [WNAr(CH2tBu)2(CHtBu)] (Ar = 2,6-iPrC6H3) with silica partially dehydoxylated at 200 °C does not lead only to the expected bisgrafted [(SiO)2WNAr(CHtBu)] species, but also surface reaction intermediates such as [(SiO)2WNAr(CH2tBu)2]. All these species were characterized by infrared spectroscopy, 1D and 2D solid state NMR, elemental analysis and molecular models obtained by using silsesquioxanes. While a mixture of several surface species, the resulting material displays high activity in the olefin metathesis.  相似文献   

4.
《Polyhedron》2007,26(5):981-988
New π-conjugated butadiynyl ligand FcC(CH3)2Fc′–CC–CC–Ph (L1) has been synthesized and its reaction with Co2(CO)8 has been studied. New clusters [FcC(CH3)2Fc′–CC–CC–Ph][Co2(CO)6]n [(1): n = 1; (2): n = 2] and [Fc–CC–CC–Ph][Co2(CO)6]n [(3): n =  1; (4): n = 2] were obtained by the reaction of ligands FcC(CH3)2Fc′–CC–CC–Ph (L1) and Fc–CC–CC–Ph (L2) with Co2(CO)8 respectively and the composition and structure of the clusters and ligands have been characterized by elemental analysis, FTIR, 1H and 13C NMR and MS. The crystal structures of compounds L1, L2, 2 and 4 have been determined by X-ray single crystal analysis.  相似文献   

5.
Although 1,1-bis(trifluoromethyl)butadiene-1,3 (1) reacts with dimethylamine with selective formation of 1,4-adduct [trans-(CF3)2CHCHCHCH2N(CH3)2], halogenation of 1 proceeds with predominant formation (>92%) of 1,2-adducts (CF3)2CCHCHXCH2X (X = Cl or Br). Electrophilic conjugated addition of “ClF” or “BrF” to 1 proceeds exclusively with the formation of 1,2-adducts (CF3)2CCHCHFCH2X (major) and (CF3)2CCHCHXCH2F (X = Cl or Br). Difluorocarbene adds selectively to CHCH2 moiety of 1 forming thermally stable vinylcyclopropane. In Diels-Alder reaction with linear or cyclic dienes (butadienes, cyclopentadiene, cyclohexadiene-1,3) and quadricyclane compound 1 behaves as dienophile providing for the reaction electron-deficient CHCH2 bond. The relative rate of cycloaddition of 1 and other fluoroolefins to quadricyclane, measured by high temperature NMR, indicates that (CF3)2CCH acts as very strong electron-withdrawing substituent. Synthetic utility of products based on 1 was also demonstrated.  相似文献   

6.
The RuC bond of the bis(iminophosphorano)methandiide-based ruthenium(II) carbene complexes [Ru(η6-p-cymene)(κ2-C,N-C[P{NP(O)(OR)2}Ph2]2)] (R = Et (1), Ph (2)) undergoes a C–C coupling process with isocyanides to afford ketenimine derivatives [Ru(η6-p-cymene)(κ3-C,C,N-C(CNR′)[P{NP(O)(OR)2}Ph2]2)] (R = Et, R′ = Bz (3a), 2,6-C6H3Me2 (3b), Cy (3c); R = Ph, R′ = Bz (4a), 2,6-C6H3Me2 (4b), Cy (4c)). Compounds 34ac represent the first examples of ketenimine–ruthenium complexes reported to date. Protonation of 34a with HBF4 · Et2O takes place selectively at the ketenimine nitrogen atom yielding the cationic derivatives [Ru(η6-p-cymene)(κ3-C,C,N-C(CNHBz)[P{NP(O)(OR)2}Ph2]2)][BF4] (R = Et (5a), Ph (6a)).  相似文献   

7.
《Comptes Rendus Chimie》2007,10(3):206-212
Unsymmetrical PhCHCH(CH2X)(CO2Me) (X = Cl, OAc) undergoes regioselective α-substitution with AlMe3 to afford (E)-PhCHCH(Et)(CO2Me) under Ni(acac)2 catalysis. On the addition of planar chiral Ferrophite ligands [(R)-CpFe(1,2-C5H3Ar{P(OR)2}) (Ar = Ph, 4-CF3Ph, 3,5-Me2Ph, 1-naphthyl; (OR)2 = 1,1′-binaphthylene, 1,1′-biphenylene)] regioselective methylation γ to the leaving group is possible. It is proposed that the bulky Ferrophite ligand leads to an intermediate nickel allyl species NiII(Me)(Ferrophite){η3-PhCHCHCH(CO2Me)} that adopts a configuration whereby the PhCH terminus of the π-allyl and the Ni–Me are syn leading to good regio (up to 6.4:1) and stereo (up to 94% ee) selectivities.  相似文献   

8.
This review covers comprehensively the authors work during the present decade based on the chemistry of ionic organometallic hydrazines formulated as [(η5-Cp′)Fe(η6-Ar-NHNH2)]+PF6? (Cp′ = C5H5, C5Me5; Ar = aryl), that could be considered as a new generation of hydrazines owing to the changes provoked by the coordination of the 12-electron Cp′Fe+ fragment both in the electronic properties of the aromatic ring and in the hydrazine group. The reactivity of this new class of hydrazine is obviously centered, as in the classic Fischer's organohydrazines, Ar-NHNH2, on the –NHNH2 functional unit which is able to react with aldehydes, RCH(O) (R = alkyl, aryl, ferrocenyl (Fc)) and ketones, RR′CO (R = alkyl, aryl; R′ = alkyl, aryl, Fc), to afford ionic organometallic hydrazones. Likewise, the mixed-sandwich hydrazine precursors react with β-diketones Me–C(O)–CH2–C(O)–Me to afford ionic organometallic pyrazoles, and with cis-dioxo-molybdenum complexes, e.g. [MoO2(S2CNEt2)2], to afford ionic organometallic mono-organodiazenido complexes in which the two metal centers are connected by a μ,η61-aryldiazenido bridge. While some ionic hydrazones exhibit NLO properties, the ionic organodiazenido hybrid complexes exhibit charge-transfer features.  相似文献   

9.
An overview is given on synthesis and structures of new bidentate phosphaalkene ligands [(RMe2Si)2CP]2E (E = O, NR, N?) and (RMe2Si)2CPN(R′)PR′′2. Exceptional properties of these ligands, extending beyond predictable properties of phosphaalkenes are: (i) the NSi bond cleavage of [(iPrMe2Si)2CP]2NSiMe3 with AuI and RhI chloro complexes under mild conditions leading to binuclear complexes of the 6π-delocalised imidobisphosphaalkene anion [(iPrMe2Si)2CP]2N?, and (ii) the chlorotropic formation of molecular 1:2 PdII and PtII metallochloroylid complexes with novel ylid-type ligands [(RMe2Si)2CP(Cl)N(R)PR2]?, and the transformation of a P-platina-P-chloroylid complex into a C-platina phosphaalkene by intramolecular chlorosilane elimination. Properties of the heavier congeners [(RMe2Si)2CP]2E (E = S, Se, Te, PR, P?, As?) and (RMe2Si)2CPEPR′′2 (E = S, Se, Te) are also described.  相似文献   

10.
Pentacarbonyl dimethylamino(methoxy)allenylidene complexes of chromium and tungsten, [(CO)5MCCC(NMe2)OMe] (M = Cr (1a), W (1b)), react with 1,3-bidentate nucleophiles such as amidines and guanidine, H2N–C(NH)R (R = Ph, C6H4NH2-4, C6H4NO2-3, NH2), by displacing the methoxy substituent to give exclusively dimethylamino(imino)-allenylidene complexes, [(CO)5MCCC{NC(NH2)R}NMe2] (2a5a, 2b). Treatment of the chromium complexes 2a5a with catalytic amounts of hydrochloric acid or HBF4 gives rise to an intramolecular cyclization. Addition of the terminal NH2 substituent to the Cα–Cβ bond of the allenylidene chain affords pyrimidinylidene complexes 69 in high yield. In contrast to the chromium complexes 2a5a, the corresponding tungsten complex 2b could not be induced to cyclize due to the lower electrophilicity of the α-carbon atom in 2b. The dimethylamino(phenyl)allenylidene complex [(CO)5CrCCC(NMe2)Ph] (10) reacts with benzamidine or guanidine similarly to 1a. However, the second reaction step – cyclization to give pyrimidinylidene complexes – proceeds much faster. Therefore, the formation of an imino(phenyl)allenylidene complex as an intermediate is established only by IR spectroscopy. The analogous reaction of 10 with 3-amino-5-methylpyrazole affords, via a formal [3+3]-cycloaddition, a pyrazolo[1,5a]pyrimidinylidene complex 13. Compound 13 is obtained as two isomers differing in the relative position of the N-bound proton (1H or 4H). The related reaction of 10 with thioacetamide yields a thiazinylidene complex and additionally an alkenyl(amino)carbene complex.  相似文献   

11.
1H-Siladigermirene R4SiGe2 (2a) and 1H-trigermirene R4Ge3 (2b) (R = SiMetBu2) with a GeGe double bond were synthesized by the reaction of tetrachlorodigermane RGeCl2–GeCl2R with dilithiosilane R2SiLi2 and dilithiogermane R2GeLi2, respectively. The skeletal GeGe double bond of 2a is trans-bent (51.0(2)°) with a bond distance of 2.2429(6) Å. The reaction of both 2a and 2b with CH2Cl2 resulted in the formation of unusual four-membered ring compounds 5a and 5b as a result of a ring expansion reaction. 1H-Trisilirene 7a and 3H-disilagermirene 7b with an SiSi double bond also smoothly reacted with CH2Cl2 to yield the four-membered ring systems 8a and 8b, respectively.  相似文献   

12.
The molecular structure of caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) was determined by means of gas electron diffraction. The nozzle temperature was 185 °C. The results of MP2 and B3LYP calculations with the 6-31G7 basis set were used as supporting information. These calculations predicted that caffeine has only one conformer and some of the methyl groups perform low frequency internal rotation. The electron diffraction data were analyzed on this basis. The determined structural parameters (rg and ∠α) of caffeine are as follows: <r(NC)ring> = 1.382(3) Å; r(CC) = 1.382(←) Å; r(CC) = 1.446(18) Å; r(CN) = 1.297(11) Å; <r(NCmethyl)> = 1.459(13) Å; <r(CO)> = 1.206(5) Å; <r(CH)> = 1.085(11) Å; ∠N1C2N3 = 116.5(11)°; ∠N3C4C5 = 121. 5(13)°; ∠C4C5C6 = 122.9(10)°; ∠C4C5N7 = 104.7(14)°; ∠N9–C4=C5 = 111.6(10)°; <∠NCHmethyl> = 108.5(28)°. Angle brackets denote average values; parenthesized values are the estimated limits of error (3σ) referring to the last significant digit; left arrow in parentheses means that this parameter is bound to the preceding one.  相似文献   

13.
Hemilability and nonrigidity in a series of mixed P,PS donor ligands has been studied in the complexes [Pd(P,PS)Cl2], [Pd(η3-C3H5)(P,PS)][SbF6], and [Rh(cod)(P,PS)][SbF6] (P,PS = Ph2P-Q-P(S)Ph2). The effect of bite angle, the rigidity of the ligand backbone, and the role of the ancillary ligands are discussed.  相似文献   

14.
《Tetrahedron: Asymmetry》2017,28(4):545-549
(Z)-3-XCH2-4-(C6H5)-3-buten-2-one enones (X = SCN, N3, SO2Me, OC6H5) were synthesized and submitted to biotransformations using whole Saccharomyces cerevisiae cells. The enone (X = SCN) produced (R)-4-(phenyl)-3-methylbutan-2-one (R)-6 with 93% ee and enones (X = N3, SO2Me, OC6H5) yielded a mixture of (R)-6 and the corresponding CC bond reduction products. Biotransformation with enone (X = N3) mediated by Saccharomyces cerevisiae resulted in two products via two different routes: (i) the ketone (R)-4-azido-3-benzylbutan-2-one in 28% yield and with >99% ee by CC bond reduction; (ii) ketone (R)-6 in 51% yield and with 95% ee via cascade reactions beginning with azido group displacement by the formal hydride from flavin mononucleotide in an SN2′ type reaction followed by reduction of the newly formed CC bond.  相似文献   

15.
Various 1H,1H-perfluoroalkanes (RFCF2CH2F, RF = CF3, C2F5, C4F9, C5F11, C6F13, C10F21) were metallated using LDA in a THF solution of ZnCl2 at RT or −78 °C to produce the corresponding perfluoroalkenylzinc reagents (RFCFCFZnCl) in a cis-selective fashion. An increased yield (75–83%) and cis-selectivity (>89%) of the perfluoroalkenylzinc reagents were observed for metallation reactions performed at −78 °C. The cis selectivity was excellent for 1H,1H-perfluoroalkanes with larger RF groups (C4F9, C5F11, C6F13, >96%). The cis-perfluoroalkenylzinc [(E)-RFCFCFZnCl] reagents were coupled with aryl iodides to obtain cis-1-arylperfluoroalkenes [(Z)-RFCFCFAr] in 71–95% isolated yields. The cis-perfluoroalkenylzinc reagents upon iodinolysis produced cis-1-iodoperfluoroalkenes [(E)-RFCFCFI] in 68–70% isolated yield.  相似文献   

16.
The syntheses, structural characterizations and reactivity patterns of main group and late transition metal carbene complexes of the bis(phosphoranimino)methandiide, [C(Ph2PNSiMe3)2]2−, and the carbodiphosphorane, Ph3PCPPh3, are described and compared to previously reviewed early transition metal analogues. Bimetallic spirocyclic aluminum complexes of the former ligand are accessed by spontaneous double deprotonation of the central carbon atom of the parent, CH2(Ph2PNSiMe3)2, by two equivalents of AlMe3, whereas the synthesis of platinum complexes requires the intermediacy of the tetralithium dimer, [Li2C(Ph2PNSiMe3)2]2, and elimination of LiCl from a metal chloride precursor. In contrast to the early transition metal analogues, which are N,C,N-pincer, Schrock-type alkylidenes, the C,N-chelated platinum complexes are more akin to Fischer carbenes, and their chemistry is dominated by the nucleophilicity of free nitrogen atom and insertions into labile N–Si bonds. Chelated and pincer carbene complexes of rhodium result from single and double orthometallations, respectively, of the phenyl rings in Ph3PCPPh3; the latter compounds represent a wholly new class of C,C,C-pincer complexes. Electronic structure calculations show that the metal–carbon interaction in these compounds may be described as a dative, two-electron, C  M σ-bond. The free bis(phosphoranimino)methandiide and carbodiphosphorane ligands, while not having formal six valence electron resonance forms, may be thought of as having “pull–pull” Fischer carbene character, but the metal to which they become coordinated ultimately dictates their chemistry.  相似文献   

17.
The ‘pincer’ pyridine-dicarbene and bipyridyl-carbene ruthenium benzylidene complexes, Ru(C–N–C)Cl2(CHPh) and Ru(C–N–N)Cl2(CHPh), (C–N–C) = 2,6-bis(DiPP-imidazol-2-ylidene)pyridine, (C–N–N) = (DiPP-imidazol-2-ylidene)bipyridine, have been prepared and characterised by spectroscopic and diffraction methods. They exhibit moderate metathesis activity. Non-symmetrical linear tridentate ether-functionalised N-heterocyclic carbene pro-ligands are also described.  相似文献   

18.
《Comptes Rendus Chimie》2016,19(3):320-332
1,3-dipolar cycloaddition of diaryldiazomethanes Ar2CN2 across Cl3C–CHN–CO2Et 1 yields Δ3-1,2,4-triazolines 2. Thermolysis of 2 leads, via transient azomethine ylides 3, to diaryldichloroazabutadienes [Ar(Ar')CN–CHCCl2] 4. Treatment of 4a (Ar = Ar' = C6H5) and 4c (Ar = Ar' = p-ClC6H4) with NaSR in DMF yields 2-azabutadienes [Ar2CN–C(H)C(SR)2] 5. In contrast, nucleophilic attack of NaStBu on 4 affords azadienic dithioethers [Ar2CN–C(StBu)C(H)(StBu)] (7a Ar = C6H5; 7b Ar' = p-ClC6H4). The reaction of 4a with NaSEt conducted in neat EtSH produces [Ph2CN–C(H)(SEt)–CCl2H] 8, which after dehydrochloration by NaOMe and subsequent addition of NaSEt is converted to [Ph2CN–C(SEt)C(H)(SEt)] 7c. Upon the reaction of 4c with NaSiPr, the intermediate dithioether [(p-ClC6H4)2CN–CHC(SiPr)2] 5k is converted to tetrakisthioether [(p-iPrSC6H4)2CN–CHC(SiPr)2] 6. Treatment of 4a with the sodium salt of piperidine leads to [Ph2CN–CHC(NC5H10)2] 10. The coordination of 6 on CuBr affords the macrocyclic dinuclear Cu(I) complex 11. The crystal structures of 5i, 7a,b, 10 and 11 have been determined by X-ray diffraction.  相似文献   

19.
Continuous gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near phase transitions. Herein we apply GTRS and DSC to the solid dipeptides Ala-Pro, Pro-Ala, and the mixture Ala-Pro/Pro-Ala 2:1. A simple change in residue order resulted in dramatic changes in thermal stability and properties. Characteristic Pro vibrations were observed at ∼75 °C higher temperature in Pro-Ala than Ala-Pro. The appearance/disappearance of characteristic vibrational modes with increasing temperature showed that a double peak in the Ala-Pro major phase transition (174–184 °C) was due to a gauche to anti 165° rotation of H3CC*NH3 about C*. CH2 rocking and wagging frequencies present in Pro-Ala were not observed in Ala-Pro. For Ala-Pro, the Ala +NH3, and Pro COO sites were flexible whereas the Pro ring moiety was not; since the OCN (C)2 amide bond is planar the CNC moiety keeps the Pro ring rigid. For Pro-Ala, CH2 sites in the Pro ring were flexible and the OCNH amide bond is perpendicular to the Pro ring. Since the mass of the Pro ring is significantly larger than the mass of the flexible Ala +NH3 moiety, Pro-Ala absorbs more thermal energy, corresponding to a higher phase transition temperature (240–260 °C). Ala-Pro, Pro-Ala, and Ala-Pro/Pro-Ala 2:1 exhibited α-helix, β-sheet, α-helix secondary structure conformations, respectively.  相似文献   

20.
KOH activation of petroleum coke (PC) was conducted with 30 vol%H2 + 70 vol% N2 as carrier gas. TG-DTG, FTIR, elemental analysis, N2 adsorption, GC and XRD techniques were used to investigate the effects of hydrogen on the activation. During the initial stage of the activation, i.e. the carbonization of the PC, additional CH and CH2 species were formed due to the chemisorption of hydrogen on the nascent sites of the PC created by the removal of the surface heteroatom groups. The formation of the CH and CH2 species increased the quantity of ‘active sites’ which is favorable to the further activation reaction, and developed the porous structure of the activated carbons. The micropore volume and BET surface areas of the activated carbon prepared under 30 vol% H2 + 70 vol% N2 and with a relatively low KOH/PC weight ratio of 2:1 have been increased from 0.78 cm3/g and 1936 m2/g to 0.97 cm3/g and 2477 m2/g, respectively, compared to that prepared in pure N2 atmosphere with the same KOH/PC ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号