首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new Ni(II) coordination polymers, namely [Ni3(Hsdac)2(sdac)2(2,2′-bipy)2] (1) and [Ni2(sdac)2(4,4′-bipy)2]·2H2O (2) (sdba = 4,4′-sulfonyldibenzoate, 2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), have been prepared under hydrothermal conditions and characterized by single crystal X-ray diffraction analyses. Compound 1 possesses an interesting chain structure. Adjacent chains are further linked through H-bond interactions between Hsdac ligands to give a two-dimensional (2D) supramolecular architecture. Compound 2 displays an unusual 2D polyrotaxane-like network.  相似文献   

2.
Two new coordination polymer frameworks Ni(NO2)2 (1) and Ni(4,4′-bipy)(NO2)2 (2) (4,4′-bipy = 4,4′-bipyridine) were synthesized by solvothermal reaction in formamide, and were characterized by elemental analysis, IR spectroscopy, single crystal X-ray diffraction, and magnetic measurement. In compound 1, each Ni2+ ion is linked with four neighboring Ni2+ ions through μ1,3-nitrito bridges forming 2D layered structure. In compound 2, each Ni2+ ion is bridged with six neighboring Ni2+ ions through four μ1,3-nitrito groups and two 4,4′-bipy ligands forming 3D structure. Magnetic measurements show weak ferromagnetism within framework of the two compounds with TN = 19 K (1) and 21 K (2).  相似文献   

3.
Two dinuclear molecule-bridged Cu(I) complexes, (μ-bpym)[Cu(PPh3)Cl]2 (1), [(μ-bpym)(CuL)2](ClO4)2·(CH3CN)2(H2O) (2) (bpym = 2,2′-bipyrimidine, L = (R)-(+)-2,2′-bis(diphenylphospho)-1,1′-dinaphthalene) have been synthesized and characterized. The molecular structures of the two new dinuclear compounds exhibit bridging of two copper(I) centers by the symmetrically bis-chelating bpym ligand. Intriguingly, compound 1 features a remarkable “intramolecular organic sandwich” configuration where the central 2,2′-bipyrimidine bridging ligand interacts in π/π/π fashion with two phenyl rings from the coligands above and below the central plane, while chiral compound 2 exhibits second-order nonlinear optical effect and temperature-dependent luminescence. Upon decreasing the temperature from 298 to 10 K, compound 2 shows a red light emission.  相似文献   

4.
The reaction of Cu(ClO4)2·6H2O with dimethylglyoxime (H2dmg) in a 1:1 mole ratio in aqueous methanol at room temperature affords the dinuclear complex [Cu2(μ-Hdmg)4] (1). Reaction of 1 with [Cu(bpy)(H2O)2](ClO4)2 (bpy = 2,2′-bipyridine) in a 1:1 mole ratio in aqueous methanol at room temperature yields the tetranuclear complex [Cu4(μ-Hdmg)2(μ-dmg)2(bpy)2(H2O)2](ClO4)2 (2). The direct reaction of Cu(ClO4)2·6H2O with H2dmg and bpy in a 2:2:1 mole ratio in aqueous methanol at room temperature also yields 2 quantitatively. The complexes 1 and 2 were structurally characterized by X-ray crystallography. Unlike the binding in Ni/Co-dmg, two different types of N?O bridging modes during the oxime based metallacycle formation and stacking of square planar units have been identified in these complexes. The neutral dinuclear complex 1 has CuN4O coordination spheres and complex 2 consists of a dicationic [Cu4(μ-Hdmg)2(μ-dmg)2(bpy)2(H2O)2]2+ unit and two uncoordinated ClO4? anions having CuN4O and CuN2O3 coordination spheres. The two copper(II) ions are at a distance of 3.846(8) Å in 1 for the trans out of plane link and at 3.419(10) and 3.684(10) Å in 2 for the trans out of plane and cis in plane arrangements, respectively. The average Cu–Noxime distances are 1.953 and 1.935 Å, respectively. The average basal and apical Cu?Ooxime distances are 1.945, 2.295 and 2.429 Å. The UV–Vis spectra of 2 is similar to the spectrum of the reaction mixture of 1 and [Cu(bpy)(H2O)2]2+. Variable temperature magnetic properties measurement shows that the interaction between the paramagnetic copper centers in complex 1 is antiferromagnetic in nature. The EPR spectra of frozen solution of the complexes at 77 K consist of axially symmetric fine-structure transitions (ΔMS = 1) and half-field signals (ΔMS = 2) at ca. 1600 G, suggesting the presence of appreciable Cu–Cu interactions.  相似文献   

5.
Five new coordination polymers, [Cd(1,2′-cy)0.5(bix)H2O]n (1), [Cd2(1,2′-cy)2(1,10′-phen)2(H2O)2] (2), {[Co(1,2-cy)(2,2′-bipy)(H2O)2]·2H2O}n (3) {[Cd(succ)(1,10′-phen)H2O]·H2O}n (4), and {[Cd(succ)(2,2′-bipy)H2O]·2H2O}n (5) (1,2-cy = 4-cyclohexene-1,2-dicarboxylate, succ = succinic acid, bix = 1,4-bis(imidazol-1-ylmethyl)benzene, 1,10′-phen = 1,10-phenanthroline, 2,2′-bipy = 2,2′-bipyridine), have been synthesized and characterized by single-crystallographic X-ray diffraction. Complex 1 shows a two-dimensional covalent layer structure. Complex 2 exhibits a two-dimensional supramolecular layer network composed from discrete fundamental units. Complex 3 exhibits a one-dimensional covalent chain-like structure, which further extends to a two-dimensional supramolecular structure with hydrogen bonding and π-π interactions respectively. Complexes 4 and 5 show three-dimensional supramolecular networks composed from one-dimensional chain-like covalent structures. Furthermore, the magnetic property of complex 3 and fluorescent properties of complexes 1, 2, 4 and 5 have also been studied.  相似文献   

6.
《Polyhedron》2005,24(3):397-406
Four 4,4′-bipyridine α,ω-dicarboxylate coordination polymers Cu(bpy)(C5H6O4) (1), Zn(bpy)(C5H6O4) (2), Zn(bpy)(C6H8O4) (3) and Mn(bpy)(C8H12O4) · H2O (4) have been synthesized and structurally characterized by single crystal X-ray diffraction methods (bpy = 4,4-bipyridine, (C5H6O4)2− = glutarate anion, (C6H8O4)2− = adipate anion, (C8H12O4)2− = suberate anion). Their crystal structures are featured by dimeric metal units, which are co-bridged by 4,4′-bipyridine ligands and dicarboxylate anions such as glutarate, adipate and suberate anions to generate 2D layers with a (4,4) topology in 1, 2 and 4 as well as to form 3D frameworks in 3. Two 3D frameworks in 3 interpenetrate with each other to form a topology identical to the well-known Nb6F15 cluster compound. Over 5–300 K, the paramagnetic behavior of 4 follows the Curie–Weiss law χm(T  Θ) = 4.265(5) cm3 mol−1 with the Weiss constant Θ = −6.3(2) K. Furthermore, the thermal behavior of 3 and 4 is also discussed.  相似文献   

7.
Three new Cu(II) complexes with carboxylic ligand, namely {[Cu(qc)2(py)]·4H2O} (1), [Cu(qc)2(4,4′-bpy)] (2) and [Cu(pc)(2,2′-bpy)(H2O)]2·H2O (3) (Hqc = 3-hydroxy-2-quinoxalinecarboxylic acid, H2pc = 4-hydroxyphthalic acid, py = pyrazine) have been synthesized and characterized. In both 1 and 2, each Cu(II) ion is coordinated by two quinoxalinecarboxylate moieties in the equatorial plane and two 4,4′-bpy or pyrazine units provide coordination in the axial positions, thus, resulting in a 1-D polymeric chain structure. Complex 3 has a dimeric structure in which two Cu(II) cations are bridged by two deprotonated pc2? ligands and two 2,2′-bpy molecules. As heterogeneous catalysts, the title complexes showed high catalytic efficiency in the green oxidative polymerization of 2,6-dimethylphenol (DMP) to poly(1,4-phenylene ether) (PPE) in the presence of H2O2 as oxidant in water under mild conditions. Moreover, they allow reuse without significant loss of activity through four runs, which suggests that these catalysts are efficient, mild, and easily recyclable for the oxidative coupling of DMP. The preliminary study of the catalytic–structural correlations suggests that the coordination environment of the metal center plays an important role in the improvement of their catalytic efficiencies.  相似文献   

8.
Three new heterometallic 1D coordination polymers [FeIII2Pr(4-Me-sal)4(2,2′-bipy)2(H2O)6](NO3) · 2MeOH · 1.5H2O (1), [FeIII2Gd(4-Me-sal)4(2,2′-bipy)2(H2O)5]Cl1/2(NO3)1/2 · 5H2O (2) and [FeIII2Dy(4-Me-sal)4(2,2′-bipy)2(H2O)5]Cl1/2(NO3)1/2 · 5H2O (3) have been synthesized. 1 and 2 were characterized by single-crystal X-ray crystallography, and 3 was shown to be isomorphous to 2 by X-ray powder diffraction. Magnetic studies show that the three compounds show a similar temperature dependence of their magnetic susceptibilities over the range 1.8–300 K. The observed decrease of χT with decreasing temperature for all three compounds could be the result of antiferromagnetic interactions between Fe–Ln centres and/or the depopulation of the Stark sublevels in the case of the anisotropic Ln ions (PrIII and DyIII).  相似文献   

9.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

10.
A new compound based on transition metal complexes modified heteropolyanions and isopolyanions: [{Cu(2,2′-bipy)}6(Mo6O22)][SiMo12O40] (1) (2,2′-bipy = 2,2′-bipyridine), has been hydrothermally synthesized and characterized by elemental analysis, IR, TG and single-crystal X-ray diffraction. In compound 1, each of the [Mo6O22]8? clusters is surrounded by six {Cu(2,2′-bipy)}2+ fragments forming [{Cu(2,2′-bipy)}6(Mo6O22)]4+ cations which further alternately link the [SiMo12O40]4? anions to result in an unusual 1D chain.  相似文献   

11.
The magnetic properties of three octahedral iron(II) complexes with Schiff-base like equatorial N2O2 coordinating ligands and methanol (MeOH) or 4,4′-bipyridyl (bipy) as axial ligands are reported. The methanol adduct 1(MeOH) ([FeL1(MeOH)](MeOH); with L1 = [3,3′]-[3,4-pyridinebis(iminomethylidyne)bis(2,4-pentanedionato)(2-)-N,N′,O2,O2′] shows a strong spontaneous magnetization at low temperatures. The complexes 2(MeOH)0.5 ([FeL1(bipy)](MeOH)0.5) and 3(MeOH) ([FeL2(MeOH)2](MeOH); with L2 = [3,3′]-[1,2-phenylenebis(iminomethylidyne)bis(2,4-dioxo-4-phenylbutane)(2-)-N,N′,O2,O2′] show no indication for some long-range magnetic ordering. Results from X-ray structure analysis of all three complexes indicate that the strong spontaneous magnetization of 1(MeOH) is due to spin canting with a canting angle near 90°.  相似文献   

12.
A new ligand bis-(4-imidazol-1-yl-phenyl)-diazene (azim), incorporating an azo moiety at the center and two imidazole groups at the terminals has been designed and synthesized. Under solvothermal conditions, this ligand reacts with Cd(NO3)2·6H2O and different angular aromatic dicarboxylates to form layered coordination polymers: [Cd(azim)(bcp)]n (1) and {[Cd(azim)(oba)](H2O)}n (2) [bcpH2 = 1,3-bis-(4′-carboxy phenoxy)benzene; oba = 4,4′-oxybis(benzoate)]. Both 1 and 2 have been characterized by single-crystal X-ray diffraction technique, elemental analysis, PXRD and IR spectroscopy. The structure of each polymer looks like 2D grid where two layers are interpenetrated in a “cloth-like” topology. Both the structures contain single- and double-stranded helical coils where the pitches as well as the width are controlled by the carboxylate co-ligands. The hydrogen-bonding interactions between adjacent layers extend these structures to overall 3D supramolecular architectures.  相似文献   

13.
《Polyhedron》2007,26(9-11):2142-2146
In this work, 4-pyridyl-phenylanthracene-iminonitroxide radical 2 was synthesized, which can make the coordination to metal ions. It was confirmed by the time-resolved ESR experiments that 2 has a photo-excited quartet (S = 3/2) high-spin state. Cu(II)(hfac)2(2)2 and Mn(II)(hfac)2(2)2 were synthesized by using 2 as a ligand. Their magnetic properties on the ground states were analyzed by three-spincluster model S1  SM  S2 (S1 = S2 = SM = 1/2 for Cu(II)(hfac)2(2)2 and S1 = S2 = 1/2, SM = 5/2 for Mn(II)(hfac)2(2)2). The exchange interactions (J/kB) between 2 and the metal ions were very weak (J/kBs were ferromagnetic for Cu(II)(hfac)2(2)2 and antiferromagnetic for Mn(II)(hfac)2(2)2). The molecular orbital calculations of 2 have suggested the strong interaction between the paramagnetic center of the metal ions and the photo-excited quartet high-spin state.  相似文献   

14.
The copper(II) complex [Cu(L)(dppz)](ClO4)2 (1) having a tripodal ligand ferrocenylmethylbis(2-pyridylmethylamine) (L) with a pendant ferrocenyl unit and a planar NN-donor dipyrido-[3,2-a:2′,3′-c]-phenazine (dppz) base is prepared and its DNA binding and cleavage properties studied. The complex is redox active showing cyclic voltammetric responses at 0.52 and –0.01 V vs. SCE due to Fe(III)/Fe(II) and Cu(II)/Cu(I) couples, respectively. The complex that binds to the major groove of DNA shows dual chemical nuclease activity involving both the metal centres. The complex displays efficient photo-induced DNA cleavage activity in visible laser light of 458 and 568 nm wavelengths forming cleavage active hydroxyl radicals. Significant DNA cleavage is also observed in red light of 647 nm within the photodynamic therapy (PDT) window.  相似文献   

15.
The new double-Schiff-base ligand H6ipa-bhea has been synthesized by condensation of a 4,6-diformylresorcinol derivative (ipa) with two equivalents of N,N-bis-(2-hydroxyethyl)ethylenediamine (bhea). Reaction with copper(II) perchlorate leads to the formation of two different products depending on the reaction conditions. The directed synthesis of either a mononuclear or dinuclear copper(II) complex is reported. The reaction in methanol results in the formation of a dinuclear complex [Cu2(H4ipa-bhea)](ClO4)2 (1). Whereas in the presence of water as solvent for the reaction, one imine side chain of the ligand is hydrolyzed regenerating the formyl moiety with the mononuclear complex [Cu(H3hyforsa-bhea)]ClO4 · 2H2O (2) as final product. Subsequent reaction of complex 2 with N,N-bis-(pyridin-2-ylmethyl)ethylenediamine (unspenp) as additional amine component results in the formation of the mononuclear complex [Cu(Hhyforsa-unspenp)]ClO4 (3). All complexes are characterized by IR spectroscopy, elemental analysis and X-ray crystallography. Temperature-dependent magnetic measurements on the dinuclear complex indicate weak antiferromagnetic exchange interactions between the copper(II) ions with a coupling constant of J = ?16.4 cm?1. Density functional calculations have been used to evaluate the magnetic properties. The exchange coupling constant can be nicely reproduced with the use of the broken symmetry approach. The exchange pathway through the meta-phenylene-linkage is discussed in terms of a competitive spin-polarization and superexchange mechanism as well as geometrical changes at the copper(II) ions.  相似文献   

16.
The preparation and magnetic properties of three Fe(II)–bis-Schiff base complexes, [Fe2(L1)2(4,4′-bpy)] · MeOH (1), [Fe(L2)(EtOH)] (2) and [Fe(L3)(MeOH)] (3) (L1 = N,N′-bis(2-hydroxy-1-naphthaldehyde)-1,2-phenylenediimine; L2 = N,N′-bis(salicylidene)-1,2-phenylenediamine; L3 = N,N′-bis(5-Cl-salicylidene)-1,2-phenylenediamine; 4,4′-bpy = 4,4′-bipyridine) are reported. X-ray single crystal structure analyses for 13 reveal that 1 shows a dinuclear Fe(II)–bis-Schiff base complex bridged by 4,4′-bpy, while 2 and 3 show mononuclear structures. Molecular packing of 2 shows a uniform one-dimensional chain structure through hydrogen bonds and Fe?π interaction and that of 3 indicates significant π–π interaction to form a dimmer structure. The χTT plots of 13 show all ferromagnetic interaction at low temperature. The origin of the ferromagnetic interaction observed in 2 is tentatively ascribed to the dimer formation through Fe?π interaction at low temperature.  相似文献   

17.
A series of metal complexes with a tripodal ligand, TMPzA, have been synthesized and characterized, and their single crystal structures have been determined by X-ray diffraction techniques. It has been found that when pyridyl derivatives as auxiliary ligands are added to the reaction mixture, the tripodal ligand TMPzA loses a pendant arm and coordinates with the metal centers to form the complexes: [Cu(DMPzA)(2,2′-bipy)]·(ClO4)2 (1), [(DMPzA)Cu(μ-4,4′-bipy)Cu(DMPzA)]·(ClO4)4 (2), [(TMPzA)Cu(μ-H2DPC)Cu(DMPzA)]·(ClO4)2 (3), [(DMPzA)Co(μ-H2DPC)Co(TMPzA)]·(ClO4)2 (4) [TMPzA = tris(3,5-bimethyl-pyrazolymethyl)amine; bipy = bipyridine; H2DPC = pyridyl-2,6-bicarboxylate; DMPzA = bis(3,5-bimethyl-pyrazolmethyl)amine]. In order to investigate the effect of the pyridyl ring on the cleavage of the pendant arm in the tripodal ligand, a fifth complex, [(TMPzA)Co(μ-HZPC)Co(TMPzA)·(H2O)2]·(ClO4)3 (5), has been prepared by using pyrazole-carboxylate (HZPC) instead of pyridyl derivatives, and its crystal structure has been determined. It has been found that the pendant arm in TMPzA ligand has not been removed in complex 5. The results show that the complexes with TMPzA have a strong ability to recognize pyridine compounds in methanol solvent, and they have potential application for molecular devices in the future. The cleavage mechanism has been studied by DFT calculations and ESI-MS spectra.  相似文献   

18.
Four copper(II) complexes with N-allyl di(picolyl)amine were synthesized and characterized by physico-chemical and spectroscopic methods. The spectrophotometric and fluorescence titration data indicate that the [(Aldpa)Cu(L)](ClO4)2 (L = dppz, dione, phen) with conjugated aromatic rings as coordinated ligands can be inserted into the base stacks of DNA more deeply than the [(Aldpa)CuCl2]. The copper(II) complexes [(Aldpa)Cu(L)](ClO4)2 (L = dppz, dione, phen) can inhibit the proliferation of the four cancer cells (Mcf-7, Eca-109, A549 and HeLa) with IC50 0.5–19.2 μM, which is larger than that (23.2–84.3 μM) of [(Aldpa)CuCl2], suggesting their inhibiting activities on the four cancer cells are correlated with their DNA-binding properties. However, the selectivity of [(Aldpa)CuCl2] to cancer cells is better than that of the other three complexes [(Aldpa)Cu(L)](ClO4)2, which indicates the substituents introduced on the secondary amino nitrogen atom of dpa have great contribution to the antitumor activities of these copper(II) complexes.  相似文献   

19.
The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2-diaminoethane and acetylacetone, reacts with Cu(BF4)2 · 6H2O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}2(μ-4,4′-bipy)](BF4)2 (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)2(μ-4,4′-bipy)]n (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)2 · 6H2O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(μ-4,4′-bipy)}(ClO4)]n (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV–Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4′-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn–Teller effect in copper(II).  相似文献   

20.
New luminescent mononuclear and dinuclear copper(II) (S = 1/2) complexes [Cu(HL)(H2O)2](ClO4)2 (1a) and [Cu2(HL)2(μ-SO4)2]·2H2O (1b) were synthesized with the acyclic tridentate pyridine-2-carboxaldehyde-2-pyridylhydrazone ligand, HL (1). Interestingly, the mononuclear complex 1a can be converted into the disulfate bridged dimeric copper(II) complex 1b by passing freshly prepared SO2 through the basic medium. On excitation at 290 nm, the ligand fluoresces at 364 nm due to an intraligand 1(π–π1) transition. Upon complexation with copper(II), the emission peak is slightly blue shifted (356 nm, F/F0 0.76 for 1a and 354 nm, F/F0 0.89 for 1b) with a little quenching in the emission intensity. The association constants (Kass (5.06 ± 0.004) × 104 for 1a and Kass (5.46 ± 0.006) × 104 for 1b at 298 K) and the thermodynamic parameters have been determined by UV–Vis spectroscopy. The molecular structure of the complex 1b (Cu?Cu 4.456 Å) has been determined by single crystal X-ray diffraction studies. The complex 1b exhibits a strong interaction towards DNA as revealed from the Kb (intrinsic binding constant) 6.3 × 104 M?1 and Ksv (Stern–Volmer quenching constant) 2.93 values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号