共查询到20条相似文献,搜索用时 10 毫秒
1.
《Journal of organometallic chemistry》2007,692(1-3):257-262
The redox reaction of bis(2-benzamidophenyl) disulfide (H2L-LH2) with [Pd(PPh3)4] in a 1:1 ratio gave mononuclear and dinuclear palladium(II) complexes with 2-benzamidobenzenethiolate (H2L−), [Pd(H2L-S)2(PPh3)2] (1) and [Pd2(H2L-S)2 (μ-H2L-S)2(PPh3)2] (2). A similar reaction with [Pt(PPh3)4] produced only the corresponding mononuclear platinum(II) complex, [Pt(H2L-S)2(PPh3)2] (3). Treatment of these complexes with KOH led to the formation of cyclometallated palladium(II) and platinum(II) complexes, [Pd(L-C,N,S)(PPh3)]− ([4]−) and [Pt(L-C,N,S) (PPh3)]− ([5]−). The molecular structures of 2, 3 and [4]− were determined by X-ray crystallography. 相似文献
2.
The reaction of [Pt2Me4(μ-SMe2)2] with 3-substituted iminic thiophenes and 2-phenylpyridine gives platinum (II) [C,N] cyclometallated complexes which contain a labile ligand (SMe2 or CH3CN). Several platinum (II) complexes have been synthesized by substitution reactions with phosphine or sulfoxide ligands to introduce, in most cases, a second chiral center. The new complexes’ reactions with methyl iodide were subsequently studied and showed results that are dependent on the steric and electronic effects of both the cyclometallated ligand and the ancillary phosphine or sulfoxide ligand. The structure of [PtMe((R)-C10H7CHMeNCHC4H2S)(CH3CN)], a synthetic precursor, is also reported. 相似文献
3.
Pt(C/N)(phe)(1, C/N = 2-(2'-thienyl)pyridine, phe = phenylalanine) shows a high binding affinity (ca. 10(6) dm(3) mol(-1)) and selectivity towards human serum albumin (HSA) and such binding is accompanied by an enhancement of photoluminescence at 562 nm; both the protein binding affinity and cytotoxicities of [Pt(C/N)(phe)(1), Pt(C/N)(trp)(2, trp = tryptophan) and Pt(C/N)(gly)(3, gly = glycine)] are affected by the amino acid ligand with having an IC(50) of up to 1 microM against a number of carcinoma cell lines. 相似文献
4.
Sahebeh Nikahd Reza Babadi Aghakhanpour S. Masoud Nabavizadeh Fatemeh Niroomand Hosseini S. Jafar Hoseini Arno Pfitzner Mozhgan Samandar Sangari 《应用有机金属化学》2019,33(11)
A new series of cycloplatinated (II) complexes with general formulas of [Pt (bhq)(N3)(P)] [bhq = deprotonated 7,8‐benzo[h]quinoline, P = triphenyl phosphine (PPh3) and methyldiphenyl phosphine], [Pt (bhq)(P^P)]N3 [P^P = 1,1‐bis (diphenylphosphino)methane (dppm) and 1,2‐bis (diphenylphosphino)ethane] and [Pt2(bhq)2(μ‐P^P)(N3)2] [P^P = dppm and 1,2‐bis (diphenylphosphino)acetylene] is reported in this investigation. A combination of azide (N3?) and phosphine (monodentate and bidentate) was used as ancillary ligands to study their influences on the chromophoric cyclometalated ligand. All complexes were characterized by nuclear magnetic resonance spectroscopy. To confirm the presence of the N3? ligand directly connected to the platinum center, complex [Pt (bhq)(N3)(PPh3)] was further characterized by single‐crystal X‐ray crystallography. The photophysical properties of the new products were studied by UV–Vis spectroscopy in CH2Cl2 and photoluminescence spectroscopy in solid state (298 or 77 K) and in solution (77 K). Using density functional theory calculations, it was proved that, in addition to intraligand charge‐transfer (ILCT) and metal‐to‐ligand charge‐transfer (MLCT) transitions, the L′LCT (L′ = N3, L = C^N) electronic transition has a remarkable contribution in low energy bands of the absorption spectra (for complexes [Pt (bhq)(N3)(P)] and [Pt2(bhq)2(μ‐P^P)(N3)2]). It is indicative of the determining role of the N3? ligand in electronic transitions of these complexes, specifically in the low energy region. In this regard, the photoluminescence studies indicated that the emissions in such complexes originate from a mixed 3ILCT/3MLCT (intramolecular) and also from aggregations (intermolecular). 相似文献
5.
Janina Kuduk-Jaworska 《Transition Metal Chemistry》1994,19(3):296-298
Summary New neutral platinum complexes of Schiff bases or their hydrated derivatives were prepared and a new path to mixed ligand platinum(II) complexes is proposed. Reactions of [PtCl4]2– with multidentate Schiff bases give chelates which react further, resulting in cis-coordinated mixed N-donor ligand complexes. Structures are proposed on the basis of chemical analyses, electrical conductivities and i.r. studies. 相似文献
6.
Wen HM Wu YH Xu LJ Zhang LY Chen CN Chen ZN 《Dalton transactions (Cambridge, England : 2003)》2011,40(26):6929-6938
A series of platinum(II) complexes with 1,3-bis(2-pyridylimino)isoindoline (BPI) derivatives were prepared by substitution of the coordinated Cl in the precursor complex Pt(BPI)Cl with a N-heterocyclic ligand such as pyridine, phthalazine or phenanthridine. These complexes display orange to red luminescence in fluid dichloromethane solutions and in the solid states at room temperature. The photophysical properties were tuned by introducing electron-withdrawing -NO(2) or electron-donating -NH(2) to the BPI ligand. The DFT computational studies suggest that the emission in the N-heterocyclic ligand substituted platinum(II) complexes originates mainly from the (3)[π→π*(BPI)] (3)IL triplet excited state, mixed with some (3)[dπ(Pt)→π*(BPI)] (3)MLCT character. Compared with the precursor Pt(BPI)Cl, both the low-energy absorption and the emission in the N-heterocyclic ligand substituted platinum(II) complexes exhibits a distinct blue-shift due to an obviously enhanced contribution from the (3)IL state and a reduced (3)MLCT character. 相似文献
7.
Prokhorov AM Slepukhin PA Rusinov VL Kalinin VN Kozhevnikov DN 《Chemical communications (Cambridge, England)》2011,47(27):7713-7715
Novel B,N,N-cyclometallated Pt(II) complexes of 2,2'-bipyridin-6-yl carboranes exhibit absorption and emission similar to relative Pt(II) complexes of aromatic C,N,N-ligands: the same transitions but lower intensities. DFT calculations suggest the former emits from the (3)MLCT state while for the latter the mixed (3)ICT-MLCT transitions should be considered. 相似文献
8.
Ayesha Sharmin Kenneth I. Hardcastle Edward Rosenberg J.B. Alexander Ross 《Journal of organometallic chemistry》2009,694(6):988-284
The series of complexes [XRu(CO)(L-L)(L′)2][PF6] (X = H, TFA, Cl; L-L = 2,2′-bipyridyl, 1,10-phenanthroline, 5-amino-1,10-phenanthroline and 4,4′-dicarboxylic-2,2′-bipyridyl; L′2 = 2PPh3, Ph2PC2H4PPh2, Ph2PCHCHPPh2) have been synthesized from the starting complex K[Ru(CO)3(TFA)3] (TFA = CF3CO2) by first reacting with the phosphine ligand, followed by reaction with the L-L and anion exchange with NaPF6. In the case of L-L = phenanthroline and L′2 = 2PPh3, the neutral complex Ru(Ph3P)(CO)(1,10-phenanthroline)(TFA)2 is also obtained and its solid state structure is reported. Solid state structures are also reported for the cationic complexes where L-L = phenanthroline, L2 = 2PPh3 and X = Cl and for L-L = 2,2′-bipyridyl, L2 = 2PPh3 and X = H. All the complexes were characterized in solution by a combination of 1H and 31P NMR, IR, mass spectrometry and elemental analyses. The purpose of the project was to synthesize a series of complexes that exhibit a range of excited-state lifetimes and that have large Stokes shifts, high quantum yields and high intrinsic polarizations associated with their metal-to-ligand charge-transfer (MLCT) emissions. To a large degree these goals have been realized in that excited-state lifetimes in the range of 100 ns to over 1 μs are observed. The lifetimes are sensitive to both solvent and the presence of oxygen. The measured quantum yields and intrinsic anisotropies are higher than for previously reported Ru(II) complexes. Interestingly, the neutral complex with one phosphine ligand shows no MLCT emission. Under the conditions of synthesis some of the initially formed complexes with X = TFA are converted to the corresponding hydrides or in the presence of chlorinated solvents to the corresponding chlorides, testifying to the lability of the TFA Ligand. The compounds show multiple reduction potentials which are chemically and electrochemically reversible in a few cases as examined by cyclic voltammetry. The relationships between the observed photophysical properties of the complexes and the nature of the ligands on the Ru(II) is discussed. 相似文献
9.
Chang SY Kavitha J Hung JY Chi Y Cheng YM Li EY Chou PT Lee GH Carty AJ 《Inorganic chemistry》2007,46(17):7064-7074
New Pt(II) dichloride complexes [Pt(1-iqdzH)Cl2] (2a) and [Pt(3-iqdzH)Cl2] (2b), in which idqzH = 1- or 3-isoquinolinyl indazole, were prepared by treatment of the corresponding indazoles with K2PtCl4 in aqueous HCl solution. Despite their nonemissive nature, these complexes could react with excess indazole, sodium picolinate, and 3-trifluoromethyl-5-(2-pyridyl) pyrazole [(fppz)H] to afford the respective a and b series of luminescent complexes [Pt(1-iqdz)(L/\X)] and [Pt(3-iqdz)(L/\X)], where L/\X = 1-iqdz (1a), 3-iqdz (1b), pic (3a, 3b), and fppz (4a, 4b). Single-crystal X-ray diffraction studies of 1b, 2a, and 3b revealed a planar molecular geometry without notable intermolecular Pt...Pt contact in the solid crystal, a result of the steric repulsion imposed by the bulky indazole fragments. For coordination complexes 1, 3, and 4, photoluminescence in degassed CH2Cl2 revealed high quantum efficiency and short radiative lifetimes in the range of several microseconds. As supported by the spectral feature, the associated radiation lifetimes, and a computational approach based on time-dependent density function theory (TD-DFT), the origin of the emission is attributed to a mixed 3MLCT/3pipi transition. The TD-DFT approach further confirmed that, except for the series 1 complexes, the HOMO of 3-iqdz complexes 3b and 4b is much less located at the central Pt(II) atom than the HOMO orbitals of the respective 1-iqdz complexes 3a and 4a, leading to a smaller degree of MLCT contribution. Consequently, there are a blue-shifted emission signal and an inferior emission quantum yield for the 3-iqdz derivatives. OLED devices with a multilayer configuration of ITO/NPB/CBP:3a/BCP/Alq3/LiF/Al were fabricated using a CBP layer doped with various concentrations of 3a, ranging from 6% to 100%, within the emitting layer. The best device performance was realized using a 6% doping concentration, for which the external quantum yield of 4.93%, luminous efficiency of 12.19 cd/A, and power efficiency of 6.12 lm W-1 were observed at 20 mA/cm2, while a maximum luminescence as high as 20296 cd/m2 was also realized at 16 V, showing good prospect for the fabrication of Pt(II) based OLEDs. 相似文献
10.
Giancarlo Cravotto Giovanni Palmisano Tiziano Radice 《Journal of organometallic chemistry》2005,690(8):2017-2026
Several palladacycle and platinacycle complexes have been prepared from easily available or naturally occurring indole derivatives, such as gramine and related compounds. Dimeric complexes were obtained with Pd(OAc)2, while Pt(DMSO)2Cl2 mainly afforded monomeric structures. A notable feature of these reactions was the formation of new M-C bonds between Pd or Pt and C-2 and C-3 of the indole ring. With ligands like 2-(2′-pyridyl)-1H-indoles, N-N metallacycles were generated instead: in fact new C-M bonds with the C-3 position could only form if N-substituted indoles were used. The reactivity of Pd dimeric complexes with PPh3, sym-collidine and DMAP was explored to obtain monomeric complexes. Three such compounds were prepared, one of which was characterized by X-ray diffraction. Metathetical reactions were carried out to effect a ligand exchange replacing OAc with halide ions, with the aim to synthesize μ-Cl and μ-Br bridged structures. Turning to the synthesis of hetaryl complexes, functionalization of the C-2 position on the indole ring was achieved. These complexes were prepared by substitution reactions starting from gramine and/or its alkylammonium salts. 相似文献
11.
Gregory J. Grant Natalie N. TalbottMarko Bajic Larry F. MehneThomas J. Holcombe Donald G. VanDerveer 《Polyhedron》2012,31(1):89-97
We wish to report the synthesis, crystal structures, spectroscopic and electrochemical properties of several new Pt(II) heteroleptic complexes containing the thiacrown, 9S3 (1,4,7-trithiacyclononane) with a series of substituted phenanthroline ligands and related diimine systems. These five ligands are 5,6-dimethyl-1,10-phenanthroline(5,6-Me2-phen), 4,7-dimethyl-1,10-phenanthroline(4,7-Me2-phen), 4,7-diphenyl-1,10-phenanthroline(4,7-Ph2-phen), 2,2′-bipyrimidine(bpm), and pyrazino[2,3-f]quinoxaline or 1,4,5,8-tetraazaphenanthrene(tap). All complexes have the general formula [Pt(9S3)(N2)](PF6)2 (N2 = diimine ligand) and form similar structures in which the Pt(II) center is surrounded by a cis arrangement of the two N donors from the diimine chelate and two sulfur atoms from the 9S3 ligand. The third 9S3 sulfur in each structure forms a longer interaction with the platinum resulting in an elongated square pyramidal structure, and this distance is sensitive to the identity of the diimine ligand. In addition, we report the synthesis, structural, electrochemical, and spectroscopic properties of related Pd(II) 9S3 complex with tap. The 195Pt NMR chemical shifts for the six Pt(II) complexes show a value near −3290 ppm, consistent with a cis-PtS2N2 coordination sphere although more electron-withdrawing ligands such as tap show resonances shifted by almost 100 ppm downfield. The physicochemical properties of the complexes generally follow the electron-donating or withdrawing properties of the phenanthroline substituents. 相似文献
12.
The pK(a) values in DMSO of the monoprotic complexes [(L(2)Pt)(2)(mu-OH)(mu-NMePh)](2+) (4) (L(2) = Ph(2)PCH(2)CH(2)PPh(2) (dppe), Ph(2)PCMe(2)PPh(2) (dppip)) are 11.9 +/- 0.1 (L(2) = dppe) and 13.5 +/- 0.2 (L(2) = dppip) as determined by (31)P NMR equilibrium titration with bases of known pK(a). Complexes 4 were prepared by treatment of [L(2)Pt(mu-OH)](2)(2+) (1) with N-methylaniline. The oxo complexes [(L(2)Pt)(2)(mu-O)(mu-NMePh)](+), formed in the equilibrium titration reactions, were independently synthesized in THF by deprotonation of [(L(2)Pt)(2)(mu-OH)(mu-NMePh)](2+) with NaN(SiMe(3))(2) and characterized as NaBF(4) adducts. Similar experiments with diprotic [L(2)Pt(mu-OH)](2)(2+) (L(2) = dppe, Ph(2)PCH(2)CH(2)CH(2)PPh(2) (dppp)) were complicated by exchange processes and were less conclusive, giving pK(a1) < 18 and pK(a2) > 18 in DMSO. 相似文献
13.
The synthesis, structural characterization, photoluminescence properties, and density functional theory analysis of three Pt(II) diimine complexes, Pt(dbbpy)(C triple bond CR)2 [dbbpy = 4,4'-di(tert-butyl-2,2'-bipyridine; R = -SiMe3, -CC-SiMe3, or -t-Bu], are presented. The Pt(dbbpy)(C triple bond C-tBu)2 complex serves as a carbon-based ligand structure for which the photophysical properties of the two silicon-bearing complexes are compared in dichloromethane. Pt(dbbpy)(C triple bond C-SiMe3)2 and Pt(dbbpy)(C triple bond C-C triple bond C-SiMe3)2 display visible absorptions with strong green emission (lambda(emmax) = 526 and 524 nm, respectively) while Pt(dbbpy)(C triple bond C-t-Bu)2 displays efficient, long-lived yellow emission (lambda(emmax) = 557 nm). Direct side by side comparisons of Pt(dbbpy)(C triple bond C-SiMe3)2 and Pt(dbbpy)(C triple bond C-t-Bu)2 suggest that the difference in excited state energy results from the relative sigma-donor strength of the acetylide ligands. 相似文献
14.
Platinum(II) dimethyl complexes of the three triphosphines PhP(CH2CH2CH2PPh2)2, PhP(CH2CH2PPh2)2, and PhP(CH2CH2PMe2)2 have been shown by 31P NMR to undergo exchange of the terminal phosphino groups. An exchange route involving a five-coordinate platinum(II) complex is proposed. 相似文献
15.
Hua F Kinayyigit S Rachford AA Shikhova EA Goeb S Cable JR Adams CJ Kirschbaum K Pinkerton AA Castellano FN 《Inorganic chemistry》2007,46(21):8771-8783
The photophysical and electrochemical properties of a platinum(II) diimine complex bearing the bidentate diacetylide ligand tolan-2,2'-diacetylide (tda), Pt(dbbpy)(tda) [dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine] (1), are compared with two reference compounds, Pt(dbbpy)(C[triple bond]CPh)(2) (2) and Pt(dppp)tda [dppp = 1,3-bis(diphenylphosphino)propane] (3), respectively. The X-ray crystal structure of 1 is reported, which illustrates the nearly perfect square planarity exhibited by this metallacycle. Chromophore 2 possesses low-lying charge-transfer excited states analogous to 1, whereas structure 3 lacks such excited states but features a low-lying platinum-perturbed tda intraligand triplet manifold. In CH(2)Cl(2), 1 exhibits a broad emission centered at 562 nm at ambient temperature, similar to 2, but with a higher photoluminescence quantum yield and longer excited-state lifetime. In both instances, the photoluminescence is consistent with triplet-charge-transfer excited-state parentage. The rigidity imposed by the cyclic diacetylide ligand in 1 leads to a reduction in nonradiative decay, which enhances its room-temperature photophysical properties. By comparison, 3 radiates highly structured tda-localized triplet-state phosphorescence at room temperature. The 77 K emission spectrum of 1 in 4:1 EtOH/MeOH becomes structured and is quantitatively similar to that measured for 3 under the same conditions. Because the 77 K spectra are nearly identical, the emissions are assigned as (3)tda in nature, implying that the charge-transfer states are raised in energy, relative to the (3)tda levels in 1 in the low-temperature glass. Nanosecond transient absorption spectrometry and ultrafast difference spectra were determined for 1-3 in CH(2)Cl(2) and DMF at ambient temperature. In 1 and 2, the major absorption transients are consistent with the one-electron reduced complexes, corroborated by reductive spectroelectrochemical measurements performed at room temperature. As 3 does not possess any charge-transfer character, excitation into the pipi* transitions of the tda ligand generated transient absorptions in the relaxed excited state assigned to the ligand-localized triplet state. In all three cases, the excited-state lifetimes measured by transient absorption are similar to those measured by time-resolved photoluminescence, suggesting that the same excited states giving rise to the photoluminescence are responsible for the absorption transients. ESR spectroscopy of the anions 1- and 2- and reductive spectroelectrochemistry of 1 and 2 revealed a LUMO based largely on the pi* orbital of the dbbpy ligand. Time-dependent density functional theory calculations performed on 1-3 both in vacuum and in a CH(2)Cl(2) continuum revealed the molecular orbitals, energies, dipole moments, and oscillator strengths for the various electronic transitions in these molecules. A DeltaSCF-method-derived shift applied to the calculated transition energies in the solvent continuum yielded good agreement between theory and experiment for each molecule in this study. 相似文献
16.
Herein we report the synthesis of 4-aryl-1-benzyl-1H-1,2,3-triazoles (atl), made via "Click chemistry" and their incorporation as cyclometallating ligands into new heteroleptic iridium(III) complexes containing diimine (N(^)N) ancillary ligands 2,2'-bipyridine (bpy) and 4,4'-di-tert-butyl-2,2'-bipyridine (dtBubpy). Depending on decoration, these complexes emit from the yellow to sky blue in acetonitrile (ACN) solution at room temperature (RT). Their emission energies are slightly blue-shifted and their photoluminescent quantum efficiencies are markedly higher (between 25 and 80%) than analogous (C(^)N)(2)Ir(N(^)N)(+) type complexes, where C(^)N is a decorated 2-phenylpyridinato ligand. This increased brilliance is in part due to the presence of the benzyl groups, which act to sterically shield the iridium metal center. X-ray crystallographic analyses of two of the atl complexes corroborate this assertion. Their electrochemistry is reversible, thus making these complexes amenable for inclusion in light-emitting electrochemical cells (LEECs). A parallel computational investigation supports the experimental findings and demonstrates that for all complexes included in this study, the highest occupied molecular orbital (HOMO) is located on both the aryl fragment of the atl ligands and the iridium metal while the lowest unoccupied molecular orbital (LUMO) is located essentially exclusively on the ancillary ligand. 相似文献
17.
Chi-Hang Tao Vivian Wing-Wah Yam 《Journal of Photochemistry and Photobiology, C: Photochemistry Reviews》2009,10(3):130-140
In this review, the synthesis, electronic absorption and luminescent properties of a series of branched alkynylpalladium(II) and -platinum(II) phosphine complexes with different alkynyl backbones and some of their structurally related complexes in the literature will be discussed. With the growing research interest in the potential application of these complexes in the field of non-linear optics (NLO), the two-photon absorption (TPA) properties and the corresponding structure–property relationships of selected luminescent branched platinum(II) bis-alkynyl complexes will also be described. 相似文献
18.
Juan M. G. Fernández Manuel F. Rubio-Arroyo Consuelo Rubio-Poo Aurora de la Peña 《Monatshefte für Chemie / Chemical Monthly》1983,114(5):535-540
The preparation ofcis-dichloro Pt(II) andcis-dichloro Pd(II) complexes ofN-[3-hydroxyestra 1:3:5 (10)trien-17β]ethylendiamine,N-[3-hydroxyestra 1:3:5 (10)trien-17β]1,3-propylendiamine, andN-[3-hydroxyestra 1:3:5 (10)trien-17β]2-aminomethylpyridine is reported. The complexes have been characterized by chemical analysis, infrared spectroscopy and molar conductivity. 相似文献
19.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms. 相似文献