首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulse radiolysis technique has been employed to study the reaction of different oxidizing and reducing radicals with mangiferin. The reaction of OH radical showed the formation of transient species absorbing in 380–390 and 470–480 nm region. The reaction with specific one-electron oxidants (N3, CCl3O2) also showed the formation of similar transient absorption bands and is assigned to phenoxyl radicals. The pKa values of the transient species have been determined to be 6.3 and 11.9. One-electron oxidation potential of mangiferin at pH 9 has been found to be 0.62 V vs. NHE. The reaction of eaq showed the formation of transient species with λmax at 340 nm, which is assigned to the ketyl anion radical formed on addition of eaq at carbonyl site. Reactions of one-electron oxidised mangiferin radicals with ascorbic acid have also been studied.  相似文献   

2.
The rostrum of Belemnitella americana (Morton) from the Marshalltown formation (Kmt, Upper Cretaceous) of the Chesapeake and Delaware Canal was investigated by electron paramagnetic resonance (EPR) spectroscopy. The rostrum composed of biogenic calcite possessed inorganic radical centers CO2, SO2, and SO3 with isotropic resonances with g values of 2.0007, 2.0057, and 2.0031, respectively. SO3 was found to also display an axially symmetric resonance typical of that seen in calcite of geologic origin with g=2.0036 and g=2.0021. Mn2+ signals of orthorhombic symmetry and very narrow line width (∼0.1 mT) were also noted (|D|=9.3 mT (∼0.009 cm−1), |E|=3.1 mT (∼0.003 cm−1)). Isochronal annealing studies reveal that these inorganic radical species reside in energy traps that are significantly deeper than previously determined as revealed by their annealing temperatures: SO2 (isotropic), T*∼340 °C; SO3 (isotropic), T*∼230 °C; SO3 (axial), T*∼190 °C. These data suggest that these spin centers may be used to extend the upper limit for dating purposes to times on the order of 1 Ma for SO3 (axial) and 200–300 Ma for SO3 (isotropic). Spin–spin and spin–lattice relaxation studies employing progressive microwave saturation were determined for all sulfur-based radical species and found to be consistent with the supposition of the isotropic signals existing in environments that are conducive to dynamic averaging of the g-anisotropy.  相似文献   

3.
The reaction of OH with naringenin (4′,5,7-trihydroxyflavanone) in the presence of air induced the formation of the hydroxylation product eriodictyol (3′,4′,5,7-tetrahydroxyflavanone). Its yield was dependent on pH. The initial degradation yield of naringenin was Gi(-Nar)=(2.5±0.2)×10−7 mol dm−3 J−1. For the reaction with OH, a rate constant k (OH+naringenin)=(7.2±0.7)×109 M−1 s−1 was determined. In the presence of N2O and NaN3/N2O, no eriodyctiol was formed. Apigenin (4′,5,7-trihydroxyflavon) was detected as decay product of the naringenin phenoxyl radicals. In Ar-saturated solutions, naringenin exhibited a pronounced radiation resistance, G(-naringenin) ∼0.3×10−7 mol dm−3 J−1.  相似文献   

4.
《Polyhedron》2007,26(9-11):2174-2178
A ligand, 4-methoxy-4′,4″-bis[N,N-bis(2-pyridylmethyl) aminomethyl]triphenyl-amine, and its palladium and copper dinuclear complexes were designed and prepared in order to examine intramolecular interactions between an organic cation radical and the metal ion. Novel NMR techniques, COSY and NOESY, were applied to the palladium complex to examine its conformation in solution. The palladium complex was found to prefer a folded conformation at ambient temperature, indicating the occurrence of intramolecular stacking interaction. CV measurements of the copper complex showed reversible CuI/CuII and TPA/TPA+ redox couples. The spin–spin interaction in the radical pendant copper complex generated upon one electron oxidation of the copper complex was examined by cw-ESR measurements.  相似文献   

5.
The article presents a simple method that can be used to get the concentration of various species in mixed-modifier borate glasses. By using the fraction of four coordinated boron in xCaO (30  x)Na2O70B2O3 (0  x  27.5 mol%) and xCaO(40  x)Na2O60B2O3 glasses (10  x  40 mol%), the concentration of BO4 and asymmetric BO3 units related to each modifier oxide could be determined. CaO has a greater tendency to form asymmetric BO3 units in the first glass series, while Na2O has the ability to form BO4 units to a greater extent. In xCaO(40  x)Na2O60B2O3 glasses, BO4 and asymmetric BO3 units are formed at the same rate from Na2O and CaO. The fraction of four coordinated boron, can be predicted by treating the studied glasses as if they are mixtures of Na2O–B2O3 and CaO–B2O3 matrices. The change in N4 is due to change in the relative concentration of these matrices.  相似文献   

6.
One-electron oxidation of 1,1′-dimethyl-2-selenourea (DMSeU) by hydroxyl radicals, one-electron-specific oxidants, was studied using pulse radiolysis technique in aqueous solution. Hydroxyl (OH) radicals and one-electron oxidants, N3, X2 (X=Cl, Br, and I) react with DMSeU to form a transient having an absorption spectrum with λmax at 430 nm. By following the absorbance at 430 nm as a function of solute concentration and in analogy with similar sulfur and selenium compounds, this transient is assigned to dimer radical cation. The dimer radical cations of DMSeU react with oxygen with bimolecular rate constant of 1.0±0.3×108 M−1 s−1. Steady-state γ-radiolysis studies on aqueous solution of DMSeU under hydroxyl radical-induced oxidation condition indicated formation of elemental selenium as one of the by-products, which has been stabilized by the addition of poly vinyl alcohol (PVA), and characterized by dynamic light scattering technique.  相似文献   

7.
《Comptes Rendus Chimie》2007,10(8):721-730
The cationic tetra-coordinated 16 electron complex [Ir(trop2dach)]+OTf (1) where (OTf = CF3SO3) and the neutral amine amido complex [Ir(trop2dach-1H)] (2) were isolated and structurally characterized. The NH function in 1 is easily deprotonated (pKaDMSO = 10.5) to yield the amino amido complex [Ir(trop2dach-1H)] (2), which is deprotonated at pKaDMSO = 19.6 to the anionic di(amido) iridate [Ir(trop2dach-2H)] (3); [(R,R)-top2dach stands for the tetrachelating diamino diolefin ligand (R,R)-N,N′-bis(5H-dibenzo[a,d]cyclohepten-5-yl)-1,2-diaminocyclohexane; (R,R)-top2dach-1H and (R,R)-top2dach-2H indicate the mono and double deprotonated form]. Complex 3 is easily oxidized by 1,4-benzoquinone (BQ) to the neutral iridium aminyl radical complex [Ir(trop2dach-2H)] (4). In combination with BQ as hydrogen acceptor and catalytic amounts of base, 4 serves as catalyst in the highly efficient dehydrogenation of functionalized primary alcohols to the corresponding aldehydes, RCH2OH + BQ  RCHO + H2BQ (H2BQ = catechol). Alcohols like geraniol and retinol are rapidly converted to geranial and retinal, while the conversion of sterically hindered alcohols like lavandulol is slower and the primary product, lavandulal, isomerizes to isolavandulal in a classical base-catalyzed reaction.  相似文献   

8.
Pulse radiolysis of aqueous diphenyloxide (DPO) has been performed under various experimental conditions. The OH radicals react with DPO on various positions of the molecule with a rate constant, k=2.1×1010 l mol−1 s−1. The major reaction step appears to be a cleavage of the C–O bond of DPO resulting into C6H4OH (λ=285 nm) and C6H5O(λ=325 nm) radicals in addition to DPO–OH adducts. They disappear according to a second-order reaction. In the presence of air or in a gas mixture of N2O:O2=4:1 the DPO–OH adducts are scavenged by oxygen, resulting into peroxyl radicals, which are long-lived species. For the reaction of eaq with DPO a rate constant, k=2×1010 l mol−1 s−1 was found.  相似文献   

9.
The reactions of OH radicals with 2-, 3-, 4-chlorobenzoic acids (ClBzA) and chlorobenzene (ClBz), k(OH+substrates)=(4.5?6.2)×109 dm3 mol?1 s?1, have been studied by pulse radiolysis in N2O saturated solutions. The absorption maxima of the OH-adducts were in the range of 320?340 nm. Their decay was according to a second-order reaction, 2k=(1?9)×108 dm3 mol?1 s?1. In the presence of N2O/O2 the formation of peroxyl radicals was detectable for 2-, 4-ClBzA and ClBz, k(OH-adduct+O2)=(2?4)×107 dm3 mol?1 s?1, while this reaction for 3-ClBzA was too slow to be registered. In the presence of N2O the degradation rates induced by gamma radiation were very similar for all chlorobenzoic acids, yet the chloride formation was distinctly higher for 3-ClBzA. In the presence of oxygen the initial degradation of 2-and 4-ClBzA equaled the OH-radical concentration, whereas in case of 3-ClBzA only ~60% of OH led to degradation. The order for the efficiency of dehalogenation was 4->2->3-ClBzA. Several primary radiolytic products could be detected by HPLC. To evaluate the toxicity of final products a bacterial bioluminescence test was carried out.  相似文献   

10.
Application of chemical probes, for detection of reactive oxygen species (ROS), was tested during γ-irradiation. The ethanol/α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) and 3,3′-diaminobenzidine (DAB) were structurally stable enough to detect OH and H2O2, increasingly generated by γ-irradiation up to 1000 Gy. Interestingly, the production rate of H2O2, but not OH, during γ-irradiation, was significantly different between in vitro systems of lettuce and spinach. These results suggest that 4-POBN and DAB could be utilized as a semi-quantitative probe to quantify OH and H2O2, produced by γ-irradiation up to 1000 Gy.  相似文献   

11.
The effect of N+ implantation on the activities of CAT, POD, SOD, T-AOC and the capacities of scavenging O2 and OH in Blakeslea trispora (−) were studied. Results showed that N+ implantation caused different changes of CAT, POD, SOD, T-AOC activities and cell scavenging O2 and OH capacities. With the implantation dose increasing CAT activity was lower than the control sample, while POD, SOD activities and the scavenging O2 and OH capacities all decreased at the beginning, and then increased lately. At the dose of 6.0×1015 N+ cm−2 T-AOC activity was lowest, while at the dose of 1.2×1015 N+ cm−2 its activity was highest, and this change trend was same to the B. trispora (−) survival rate curve. So we speculated that the changes of these antioxidases activity of B. trispora (−) induced by low-energy N+ probably have some relationship with its “saddle shape” survival rate curve.  相似文献   

12.
Phylloquinone biradical triplet species were generated by 300 nm irradiation of frozen (77 K) solutions or by treatment with AlCl3. The shape of the (Δms=1) electron paramagnetic resonance (EPR) signal of the triplet is axially symmetric (E=0) with D=19±0.5 mT for photo-induced and D=11.2±0.5 mT for chemically induced radicals. A half-field signal (Δms=2) in the region of g≈4 was detected in both cases, confirming its assignment as a triplet. An additional line arising at the center of the (Δms=1) signal with g=2.0048±0.0002 was assigned to the phylloquinone radical anion (PhQ). Electron nuclear double resonance (ENDOR) measurements of the triplet revealed the sign of the D parameter. For photo-generated radicals it appeared to be negative, which is the characteristic of radical dimers with well-separated partners (biradicals). Spin–spin distances of 5.3 and 6.3 Å, respectively, were estimated from the D parameter of photo-generated and chemically prepared phylloquinone biradicals.  相似文献   

13.
Pulse radiolytic reduction of bovine serum albumin (BSA) and lysozyme by CO2 radical in presence of polyvinyl alcohol (PVA) has been studied. At pH 6.8 in presence of 2% (w/v) PVA, reduction of BSA and lysozyme (both at 1×10−4 mol dm−3) give an additional transient peak at 390 nm along with the usual 420 nm peak. The bimolecular rate constants for the reaction of CO2 radical at pH 6.8±0.2 with BSA are 2.7×108 and 7.13×108 dm3 mol−1 s−1 at 420 nm and 390 nm respectively. The same for lysozyme are 3.2×108 and 5.6×108 dm3 mol−1 s−1 at 420 nm and 390 nm, respectively. Dimethyl disulfide also gives 390 nm and 420 nm peaks in this system upon reduction with CO2 radical. The 390 nm peak is ascribed to the sulfenium radical (RSS(H)R). Studies on the variation of pH suggests the protonation of RSSR radical (420 nm) to form RSS(H)R radical (390 nm) in this viscous media. The decay of RSS(H)R radical occurs via formation of RS radical and RS(H)S(H)R, the final product being RSH in both cases.  相似文献   

14.
ZnO nanostructures have been synthesized by radiolytic methods. A Cobalt-60 γ-source and a 7 MeV linear electron accelerator (LINAC) was used for the radiolysis experiments. Reducing agent like hydrated electron (eaq), which is produced in radiolysis of water, was used to synthesize ZnO nanostructure materials from zinc salt. 1 M tert-butanol was used to quench the primary oxidizing radical like hydroxyl radical (OH) radiolytic water solution. Doses of about 80–130 kGy were used to perform radiolysis experiments in the present investigation. Time-resolved pulse radiolysis has been used to monitor the transient species involved in the formation of ZnO nanostructures by monitoring at different wavelengths. A scheme for the formation of the ZnO nanostructured materials by the radiolytic method has been described. The formation of ZnO nanostructures was confirmed by X-ray diffraction (XRD) measurements. Dynamic light scattering (DLS) measurements indicated that the size of the nanostructures is in the range of 6–8 nm, which is in agreement with that obtained from XRD. It is interesting to note that ZnO nanostructured materials, as prepared by the radiolytic method, exhibit strong room-temperature fluorescence.  相似文献   

15.
Relative rate-studies of the reactions of 1-butoxy radicals have been carried out using a 47 L static reactor with detection of end products by FT-IR spectroscopy. Experiments were performed at 700 torr total pressure and over the temperature range 253–295 K. The chemistry of 1-butoxy is characterized by a competition between reaction with oxygen CH3CH2CH2CH2+ O2  n-C3H7CHO + HO2 (R2), which yields butanal and isomerization CH3CH2CH2CH2 CH2CH2CH2CH2OH (R3), to form a hydroxylated carbonyl-product. A reference spectrum attributed to the product of 1-butoxy isomerization was obtained and used to determine the competition between 1-butoxy isomerization versus reaction with oxygen. The results indicate that isomerization is the dominant fate of 1-butoxy radicals at ambient temperature and pressure and that its importance decreases with decreasing temperature. The rate-coefficient ratio k3/k2 (molecule cm−3) = 5.5 × 1023 exp[(−25.1 ± 0.9 kJmol−1)/RT] was obtained. This agrees with other estimates based on methods without monitoring of the isomerization product.  相似文献   

16.
The RuC bond of the bis(iminophosphorano)methandiide-based ruthenium(II) carbene complexes [Ru(η6-p-cymene)(κ2-C,N-C[P{NP(O)(OR)2}Ph2]2)] (R = Et (1), Ph (2)) undergoes a C–C coupling process with isocyanides to afford ketenimine derivatives [Ru(η6-p-cymene)(κ3-C,C,N-C(CNR′)[P{NP(O)(OR)2}Ph2]2)] (R = Et, R′ = Bz (3a), 2,6-C6H3Me2 (3b), Cy (3c); R = Ph, R′ = Bz (4a), 2,6-C6H3Me2 (4b), Cy (4c)). Compounds 34ac represent the first examples of ketenimine–ruthenium complexes reported to date. Protonation of 34a with HBF4 · Et2O takes place selectively at the ketenimine nitrogen atom yielding the cationic derivatives [Ru(η6-p-cymene)(κ3-C,C,N-C(CNHBz)[P{NP(O)(OR)2}Ph2]2)][BF4] (R = Et (5a), Ph (6a)).  相似文献   

17.
We present a Raman study of liquid and polycrystalline dioxolane, together with data for a solid dioxolane/argon film. Observed bands are assigned to the bent conformer on the basis of ab initio calculated vibrations, accompanied with potential energy distribution. Two internal modes were calculated at 658 and 720 cm−1 for the bent form. These were observed at 665 and 722 cm−1 in liquid, and split into four bands (at 694, 697, 725, and 728 cm−1) in the crystal at 10 K. In the solid dioxolane/argon film an additional band appears at 705 cm−1 (between the bands at 675 and 726 cm−1). A search for an additional dioxolane conformer trapped in argon was undertaken by performing molecular dynamics simulations of dioxolane/argon solid film and averaging overall molecular conformations. The resulting conformation did not correspond to an energy minimum, but indicated that changes of only a few degrees in dihedral angles could shift ring deformation and OCO bending modes for more than 10 cm−1. Differential scanning calorimetric measurements gave evidence of solidification upon cooling at 146 K, and two phase changes on heating (one at 158.3 K, and a melting transition at 180.3 K). Further study is required on the hysteresis effect in the temperature behavior of dioxolane, and on the nature of the intermediate solid phase.  相似文献   

18.
Irradiation of chromium(III) complexes with oxalate and pyridinedicarboxylate ligands (pda = 2,3-, 2,4-, or 2,5-dicarboxylate) leads to diverse behaviors, dictated by light energy, presence of oxygen and the ligand nature. Irradiation within the MC bands is unaffected by O2 and results in ligand substitution. The LMCT excitation is effective only when oxalate is coordinated to Cr(III); then electron transfer from oxalate to central ion generates an intermediate, consisted of a Cr(II)species and the C2O4? radicals. The species undergo fast redox reactions dependent on the presence of O2 and the pda ligand.(1) In anoxic medium the fast outersphere electron transfer from Cr(II) to solvent, generates hydrated electrons and re-oxidizes the chromium centre to CrIII. Then geminate recombination regenerates substrate, whereas competitive release of the C2O4? radical leads to substitution of one oxalate ligand by two water molecules (aquation induced by the LMCT excitation). In the presence of the pda ligand the outersphere electron transfer is accompanied by the innersphere CT, generating Cr(III) coordinated to two radical ligands: C2O4? and pda3?; the intermediate releases also eaq?, but this reaction is slower than that of the homoleptic oxalate complex. Hydrated electrons are scavenged also by the released radicals. All these processes are completed within microseconds and in consequence, the Cr(III) complexes irradiated in deoxygenated solutions are insensitive to subsequent oxygenation.(2) When UV-irradiation is carried out in oxygenated medium reaction of Cr(II) species with molecular oxygen competes with the outer- or inner electron transfer observed in anoxic medium. Both these pathways result in generation of chromate(VI). Quantum yield of the Cr(VI) production is sensitive to the presence and structure of pda ligand, decreasing within the series 2,3-pda > 2,4-pda > 2,5-pda.  相似文献   

19.
Aqueous solutions containing the minichromosomal form of the virus SV40 and the radical scavenger DMSO were subjected to γ-irradiation, and the resulting formation of single-strand breaks (SSB) was quantified. Under the irradiation conditions, most SSBs were produced as a consequence of hydroxyl radical (OH) reactions. By controlling the competition between DMSO and the viral DNA substrate for OH, we are able to estimate the rate coefficient for the reaction of OH with the SV40 minichromosome. The results cannot be described adequately by homogeneous competition kinetics, but it is possible to describe the rate coefficient for the reaction as a function of the scavenging capacity of the solution. The experimentally determined rate coefficient lies in the range 1×109–2×109 L mol−1 s−1 at 107 s−1, and increases with increasing scavenging capacity.  相似文献   

20.
The molecular structure of caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) was determined by means of gas electron diffraction. The nozzle temperature was 185 °C. The results of MP2 and B3LYP calculations with the 6-31G7 basis set were used as supporting information. These calculations predicted that caffeine has only one conformer and some of the methyl groups perform low frequency internal rotation. The electron diffraction data were analyzed on this basis. The determined structural parameters (rg and ∠α) of caffeine are as follows: <r(NC)ring> = 1.382(3) Å; r(CC) = 1.382(←) Å; r(CC) = 1.446(18) Å; r(CN) = 1.297(11) Å; <r(NCmethyl)> = 1.459(13) Å; <r(CO)> = 1.206(5) Å; <r(CH)> = 1.085(11) Å; ∠N1C2N3 = 116.5(11)°; ∠N3C4C5 = 121. 5(13)°; ∠C4C5C6 = 122.9(10)°; ∠C4C5N7 = 104.7(14)°; ∠N9–C4=C5 = 111.6(10)°; <∠NCHmethyl> = 108.5(28)°. Angle brackets denote average values; parenthesized values are the estimated limits of error (3σ) referring to the last significant digit; left arrow in parentheses means that this parameter is bound to the preceding one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号