首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heat and mass transfer processes in a pure liquid subject to intense heating is investigated. The temperature escalation rate in a heated pure liquid is controlled by two competing processes; the external power deposition and the rate of nuclei formation and growth in the liquid, which acts as a heat sink. A heat balance equation is developed and solved numerically to yield the liquid temperature curve and the evaporation rate up to the maximum attainable superheat point. The effect of heating rate on the liquid temperature curve is quantified.  相似文献   

2.
The mathematical relationship between the lifetime of a superheated liquid and temperature is investigated. The energy equation is solved in conjunction with a non-equilibrium vapor formation model in order to specify the temperature variation of the liquid during the nucleation process. It is shown that the expectation time of a uniformly superheated liquid decreases with increasing temperature. The limit of superheat in the liquid is then identified as the liquid temperature above saturation at which boiling takes place almost instantaneously. Results compare favorably with classical nucleation kinetic data.  相似文献   

3.
The fundamental behavior of boiling bubbles generated on a small film heater used for thermal ink jet (TIJ) printers is investigated experimentally under the condition of a single pulse heating in a pool of water. The pulse power and the pulse width are varied in wide ranges that include the printing conditions. As the pulse power is increased or the pulse width increased at a fixed high pulse power, numerous fine bubbles appear simultaneously on the heater and then coalesce into a thin vapor film to grow to a vapor bubble, before collapsing at the center of the heater. For a long pulse width sequence, the coalesced bubble repeats the growth and collapse. Bubble behavior is also studied in the same heat flux range using a platinum film heater enabling surface temperature measurement. From a comparison of the two heaters, the dominant mechanism of nucleation on the TIJ heater is believed to be spontaneous nucleation at around the heating rate for printing. The dependence of the size and lifetime of the coalesced bubble on pulse power and pulse width are examined. Based on the analytical model presented by Asai [J. Heat Transfer 113 (1991) 973], the pressure impulse arising during the rapid evaporation of the superheated liquid, presumed to dominate the subsequent growth of the coalesced bubble, is estimated from the measured size of the coalesced bubble. The relationship between the pressure impulse and the superheat energy in the liquid is discussed.  相似文献   

4.
Applied to a homogeneous solution of uranyl nitrate or plutonium nitrate, the physical mechanisms are discussed which control the mean nuclear power of a solution reactor. The short-time averaged power during the heating-up of a nonboiling solution is related to the mean flow rate of radiolytic gas which is necessary to yield a steady-state neutron flux. If the solution is boiling a similar relation to the flow rate of vapor is derived. This relation, however, can only be applied if the superheat of the solution permits vapor bubble growth. Otherwise, the minimum power for the required superheat will be obtained instead. These power relations are combined into a quasi-steady-state model which is discussed and verified by applying it to two experiments of the CRAC solution reactor.  相似文献   

5.
The inception process of nucleation in explosive boiling systems is theoretically investigated. With the effect of pulse heating or sudden cooling, the temperature distribution near the surface during explosive boiling is calculated. The liquid near the wall can maintain a stable layer induced by strong attractive force, and there exists maximum supersaturation beyond this stable layer. As the surface temperature and temperature gradient are high enough, the critical distance of maximum supersaturation can be larger than the radius of critical bubble, and the homogeneous nucleation will dominate the inception boiling process. For explosive boiling induced by pulse heating, homogeneous nucleation forms after a short time; while homogeneous nucleation can dominate the initial explosive boiling induced by sudden cooling.  相似文献   

6.
In heat transport devices such as oscillating heat pipe (OHP), dryout phenomena is very important and avoided in order to give the optimum performance. However, from the previous studies (including our studies), the dryout phenomena in OHP and its mechanism are still unclear. In our studies of OHP (Senjaya and Inoue in Appl Thermal Eng 60:251–255, 2013; Int J Heat Mass Transfer 60:816–824, 2013; Int J Heat Mass Transfer 60:825–835, 2013), we introduced the importance and roles of liquid film in the operating principle of OHP. In our previous simulation, the thickness of liquid film was assumed to be uniform along a vapor plug. Then, dryout never occurred because there was the liquid transfer from the liquid film in the cooling section to that in the heating section. In this research, the liquid film is not treated uniformly but it is meshed similarly with the vapor plugs and liquid slugs. All governing equations are also solved in each control volume of liquid film. The simulation results show that dryout occurs in the simulation without bubble generation and growth. Dryout is started in the middle of vapor plug, because the liquid supply from the left and right liquid slugs cannot reach until the liquid film in the middle of vapor plug, and propagates to the left and right sides of a vapor plug. By inserting the bubble generation and growth phenomena, dryout does not occur because the wall of heating section is always wetted during the bubble growth and the thickness of liquid film is almost constant. The effects of meshing size of liquid film and wall temperature of heating section are also investigated. The results show that the smaller meshing size, the smaller liquid transfer rate and the faster of dryout propagation. In the OHP with higher wall temperature of heating section, dryout and its propagation also occur faster.  相似文献   

7.
Experiments were conducted to analyze flow boiling characteristics of water in a single brass microchannel of 25 mm length, 201 μm width, and 266 μm depth. Different heat flux conditions were tested for each of two different mass flow rates over three different values of inlet fluid temperature. Temporal and spatial surface temperature profiles were analyzed to show the relative effect of axial heat conduction on temperature rise along the channel length and the effect of flow regime transition on local surface temperature oscillation. Vapor bubble growth rate increased with increasing wall superheat. The slower a bubble grew, the further it was carried downstream by the moving liquid. Bubble growth was suppressed for increased mass flux while the vapor bubble was less than the channel diameter. The pressure spike of an elongating vapor bubble was shown to suppress the growth of a neighboring bubble by more than 50% of its volume. An upstream progression of the Onset of Bubble Elongation (OBE) was observed that began at the channel exit and progressed upstream. The effects of conjugate heat transfer were observed when different flow regime transitions produced different rates of progression for the elongation sequence. Instability was observed at lower heat fluxes for this single channel experiment than for similar studies with multiple channels.  相似文献   

8.
The role of incident shock waves in the initiation of vapor explosions in volatile liquid hydrocarbons has been investigated. Experiments were carried out on single droplets (1–2 mm diameter) immersed in a host fluid and heated to temperatures at or near the limit of superheat. Shocks generated by spark discharge were directed at previously nonevaporating drops as well as at drops boiling stably at high pressure. Explosive boiling is triggered in previously nonevaporating drops only if the drop temperature is above a threshold temperature that is near the superheat limit. Interaction of a shock with a stably boiling drop immediately causes a transition to violent unstable boiling in which fine droplets are torn from the evaporating interface, generating a two-phase flow downstream. On the previously nonevaporating interface between the drop and the host liquid, multiple nucleation sites appear which grow rapidly and coalesce. Overpressures generated in the surrounding fluid during bubble collapse may reach values on the same level as the pressure jump across the shock wave that initiated the explosive boiling. A simple calculation is given, which suggests that shock focusing may influence the location at which unstable boiling is initiated.  相似文献   

9.
The concept of a confined thin film to enhance the desorption process is based on a reduced mass diffusion resistance. A wide thin film is formed into a microchannel by using a porous membrane as one wall of the channel enabling vapor extraction along the flow. Heat added to the channel results in vapor generation and subsequent extraction through the membrane. This experimental study investigates the performance of vapor extraction as a function of confined thin film thickness, pressure difference across the membrane and inlet concentration to the microchannel. In addition, heat added to the system was varied and results are presented in terms of the wall superheat temperature relative to the inlet saturated conditions of the binary fluid. The test section was equipped with a transparent window to observe bubble formation and vapor extraction. Results show that the performance, measured by the vapor release rate, increases for reduced channel thickness, for increased pressure difference across the membrane, and for lower inlet concentration. Results show that lower wall superheat correspond to higher heat transfer coefficients. Trends of Nusselt number and Sherwood number versus both channel Reynolds number and the product of the Reynolds number and Schmidt number are presented. Bubble formation in the channel does not degrade overall performance provided a critical heat flux condition does not occur.  相似文献   

10.
This paper presents an experimental study of microscopic explosive boiling introduced by a pulsed laser. The violent explosive boiling was observed in the liquid film, and the vapor bubbles together with liquid droplets were expelled from the platinum film. It is found that the apparent bubble nucleation temperature is a strong function of the heating rate. The pressure signal appears as continuous oscillation and is intensified as laser power density increases.  相似文献   

11.
Interfacial mass transfer from vapor bubbles affects markedly the heat transfer efficiency of nucleate boiling. The position of the interfacial zone that exhibits zero net mass flux, namely, the zero-flux zone, represents an essential parameter in detailed modeling works on nucleate boiling. Assuming a linear temperature profile in the superheated liquid adjacent to the heating wall, our previous work (Li et al. [10]) demonstrated the zero-flux angle as a function of wall superheat, solid-liquid- vapor contact angle, and bubble growth rate. To make a more realistic framework, we refined in this paper the proposed mass flux model by taking into account the role of thermocapillary flow that is induced by the temperature gradient around the vapor bubble, and that of non-condensable gas presented in the boiling liquid. The Hertz-Kundsen-Schrage equation describes the interfacial mass flux distribution along the vapor bubble surface. Owing to the flattened temperature distribution produced by thermocapillary flow, which significantly reduces the interfacial area to evaporation, the zero-flux zone shifts to the bubble base with most of the cap regime to condense vapor at the interface and to produce the thermal jet. This occurrence also weakens the dependence of bubble growth rate and of the contact angle on the location of zero-flux zone, and yields early occurrence of the non-condensation limit at which the entire bubble surface is subjected to evaporation. Sensitivity analysis demonstrated the significance of process parameters on the evaluation of zero-flux angle using the HKS equation.  相似文献   

12.
Injection of water vapor is an effective method of thermal action on oil-bearing seams in order to intensify the oil output and increase its yield [1]. In determining the technological characteristics of this process, it is necessary to know the dimensions of the vapor and hot liquid zones created in the seam, and also the distribution in the seam of the degree of vapor dryness. There are already well-known studies of the determination of vapor and hot liquid zones [2, 3], but the distribution of the degree of vapor dryness has not been considered. In the present study a method similar to the known method of successive interchange of steady states [4] is used in order to obtain an equation for the calculation of the distribution of the degree of vapor dryness when the vapor is injected with unchanged flow rate into a homogeneous seam. As a consequence, equations have also been obtained for the calculation of the vapor and hot liquid zones.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 174–176, January–February, 1986.  相似文献   

13.
The effectiveness of internal heating for enhancing the drying of molded ceramics is evaluated by both modeling and experiments. In the theoretical analysis, three dimensional drying-induced strain–stress are modeled, and the numerical solutions show that the internal heating generates lower internal stress than continuous convective heating or intermittent convective heating. Microwave drying is examined experimentally to study the effect of internal heating on the drying behavior of a wet sample of a kaolin slab. The drying behavior is compared among three modes: microwave heating, hot air heating and radiation heating. The transient behavior of temperatures in microwave drying is quite different from conventional drying by external heating. In particular, the temperature of the slab drops once in the progress of drying. This phenomenon cannot be predicted adequately by a simple model of one-dimensional heat conduction and moisture diffusion accompanied with an internal heat generation rate given as a linear function of the moisture content. It should be noted that the temperature behavior takes place due to the combined interactions with internal evaporation of moisture by rise in internal vapor pressure and shift of impedance or interference in the applicator. Microwave heating with a constant power above 100 W results in sample breakage due to the internal vapor pressure. However, if the power is dynamically controlled so as to maintain the temperature less than the boiling point of water, the drying succeeds without any crack generation until completion with a significantly faster drying rate than drying in convective heating or in the oven.  相似文献   

14.
Thermocapillary (Marangoni) motion of a gas bubble (or a liquid drop) under a temperature gradient can hardly be present in a one-component fluid. Indeed, in such a pure system, the vapor–liquid interface is always isothermal (at saturation temperature). However, evaporation on the hot side and condensation on the cold side can occur and displace the bubble. We have observed such a phenomenon in two different fluids submitted to a temperature gradient under reduced gravity: hydrogen under magnetic compensation of gravity in the HYLDE facility at CEA-Grenoble and water in the DECLIC facility onboard the ISS. The experiments and the subsequent analysis are performed in the vicinity of the vapor–liquid critical point to benefit from critical universality. In order to better understand the phenomena, a 1D numerical simulation has been performed. After the temperature gradient is imposed, two regimes can be evidenced. At early times, the temperatures in the bubble and the surrounding liquid become different thanks to their different compressibility and the “piston effect” mechanism, i.e. the fast adiabatic bulk thermalization induced by the expansion of the thermal boundary layers. The difference in local temperature gradients at the vapor–liquid interface results in an unbalanced evaporation/condensation phenomenon that makes the shape of the bubble vary and provoke its motion. At long times, a steady temperature gradient progressively forms in the liquid (but not in the bubble) and induces steady bubble motion towards the hot end. We evaluate the bubble velocity and compare with existing theories.  相似文献   

15.
Convective boiling of HCFC123 and FC72 in 0.19, 0.3 and 0.51 mm ID tubes is investigated. The experimental setup as well as the data reduction procedure has carefully been designed, so that the relative uncertainty interval of the measured heat transfer coefficient in microtubes is kept within ±10%. Up to 70 K liquid superheat over the saturation temperature is observed at low heat and mass fluxes. The onset of the superheat is found to be dependent on the mass flux and the boiling number of the refrigerant examined. In the saturated boiling regime, the heat transfer characteristics are much different from those in conventional-size tubes. The heat transfer coefficient is monotonically decreased with increasing the vapor quality, and becomes independent of the mass flux. Most empirical formulas are not in accordance with the present experimental data. Since the prediction using the nucleate boiling term of Kandlikar’s empirical correlations coincides with the present results, the convection effect should be minor in microtubes. On the other hand, the pressure loss characteristics are qualitatively in accordance with the conventional correlation formula while quantitatively much lower. These phenomena can be explained by the fact that the annular flow prevails in microtubes.  相似文献   

16.
Start-up and steady thermal oscillation of a pulsating heat pipe   总被引:4,自引:0,他引:4  
As a novel electronic cooling device, pulsating heat pipes (PHPs) have been received attention in recent years. However, literature survey shows that no studies were carried out on the start-up and steady thermal oscillation of the PHPs. In the present paper, the copper capillary tube was being bended to form the snake-shaped PHP. Heating power was applied on the heating section, and transferred to the condensation section and dissipated to the environment by the pure natural convection. The inside diameter of the capillary tube is 2.0 mm and the working fluid is selected as FC-72. A high speed data acquisition system was used to detect the start-up and steady thermal oscillation of the PHP. Two types of the start-up process were observed: a sensible heat receiving start-up process accompanying an apparent temperature overshoot followed by the steady thermal oscillation at low heating power, and a smooth sensible heat receiving start-up process incorporating a smooth oscillation period at high heating power. For the steady thermal oscillation, also two types were found: the random thermal oscillation with a wide frequency range, indicating the random distribution of the vapor plug and liquid slug inside the capillary tube at low heating power, and the quasi periodic thermal oscillation with the same characteristic frequency for both heating section and condensation section, indicating the uniform distribution of the vapor plug and liquid slug inside the capillary tube at high heating power. The power spectral density (PSD) was used to analyze the thermal oscillation waves. The frequency corresponds to the time that a couple of adjacent vapor plug and liquid slug passing through a specific wall surface.  相似文献   

17.
The initiation and growth of adiabatic shear bands   总被引:1,自引:0,他引:1  
A simple version of thermo/viscoplasticity theory is used to model the formation of adiabatic shear bands in high rate deformation of solids. The one dimensional shearing deformation of a finite slab is considered. For the constitutive assumptions made in this paper, homogeneous shearing produces a stress/strain response curve that always has a maximum when strain and rate hardening, plastic heating, and thermal softening are taken into account. Shear bands form if a perturbation is added to the homogeneous fields just before peak stress is obtained with these new fields being used as initial conditions. The resulting initial/boundary value problem is solved by the finite element method for one set of material parameters. The shear band grows slowly at first, then accelerates sharply, until finally the plastic strain rate in the center reaches a maximum, followed by a slow decline. Stress drops rapidly throughout the slab, and the central temperature increases rapidly as the peak in strain rate develops.  相似文献   

18.
The aim of this experimental work was to demonstrate the ability of three-color laser-induced fluorescence (3cLIF) thermometry to study the thermal mixing of two non-isothermal water sprays. Combined 3cLIF-phase Doppler analyzer measurements were also implemented to derive correlations between droplet size and temperature. Both sprays had different characteristics in terms of flow rate and droplet size distribution. The liquid spray was successively pre-heated, and the other spray was maintained and injected at ambient temperature. The thermal mixing will be discussed in light of a wide set of experimental results obtained under various experimental conditions, including different liquid flow rates, droplet size distributions and droplet concentrations. To analyze the potential effect of droplet coalescence on the mean local liquid temperature, both sprays were alternatively seeded with fluorescent dye. Main results show that significant heating of cold spray is possible when the hot spray is injected with the higher flow rate. Moreover, this heating affects only the smallest droplets.  相似文献   

19.
In this paper, we develop the mass and energy jump conditions for a vapor–liquid boundary within a porous medium. The analysis is restricted to a single fluid component and leads to the appropriate jump conditions for an evaporation front. The condition of local thermal equilibrium is assumed to exist in the homogeneous liquid and vapor regions, but not in the boundary region where rapid changes in the saturation occur.  相似文献   

20.
The chemical potential of the liquid near a flat surface was theoretically investigated to understand the surface effects on the inception process of nucleation in a boiling system. It was indicated that the liquid near a superheated surface has higher pressure than that in the bulk region owing to the existence of strong attractive force, and this pressure behavior maintains a stable liquid sublayer exactly on the surface. Both supersaturation and superheat near the wall were derived as the functions of the distance from the wall, and there is a critical length of supersaturation beyond the stable sublayer where the vapor embryo bubble is likely to generate. Finally, embryo bubble evolution was described employing the calculation of chemical potential difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号