首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
小宽厚比喷嘴喷射出的平面水膜进入静止空气中,在不同气流流速环境下对水膜碎裂过程进行了实验研究。结果表明,静止空气中的水膜表面波呈现对称波形,射流的碎裂长度随雷诺数的增大而增大,喷射压力对射流碎裂长度没有直接影响。空气助力作用使平面射流表面波的上、下气液交界面出现相位差。水膜的碎裂长度随空气助力气流速度的增大而减小;空气助力对于低雷诺数水膜射流具有很强的促进碎裂作用,所以会极大地改善低雷诺数射流的一次雾化效果。随着水流雷诺数的提高,空气助力作用对水膜碎裂长度的影响大为减弱;即使在高速助力空气的作用下,水膜仍长期保持较稳定的射流流态,没有出现明显的水膜撕裂现象。说明在小宽厚比喷嘴的瑞利(Rayleigh)模式射流中,高雷诺数射流是水膜的稳定因素。与气液流速比、气流马赫数等无量纲参数相比,液体喷射的雷诺数是射流碎裂的主要影响因素。  相似文献   

2.
气液活塞式脉冲液体射流泵装置稳定性的理论研究   总被引:2,自引:0,他引:2  
气液活赛式脉冲液体射流泵装置用于输送有毒、高温或放射性液体,装置在运行时,气液活塞筒内的气液交界面必须稳定在活塞筒内,形成稳定的脉冲运动,才能保证装置正常的稳定运行,本文在分析影响气液活塞式脉冲液体射流泵装置稳定性的主要因素基础上,运用流体力学的基本理论,导出了装置稳定性的基本方程组以及简化方程组,通过试验对上述理论进行了验证。  相似文献   

3.
阎凯  宁智  吕明  孙春华  付娟  李元绪 《力学学报》2016,48(3):566-575
压力旋流喷嘴被广泛应用于航空发动机、船用发动机、车用汽油缸内直喷发动机、燃气轮机等动力机械的燃油喷射系统中.以压力旋流喷嘴射流为研究对象,开展了圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性问题研究.对于液体射流,以往的研究往往对破碎液滴粒径数量密度分布或速度数量密度分布进行单独研究,对于这两种数量密度分布之间关系的研究较少;从相关性的角度对圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布之间的关系进行研究.采用最大熵原理方法建立了圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数.对圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数进行了讨论,对圆环旋转黏性液体射流破碎液滴粒径数量密度分布与速度数量密度分布的相关性问题进行了研究.研究结果表明,为了给出正确的圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数,射流守恒约束条件中必须同时包括质量守恒定律、动量守恒定律以及能量守恒定律;破碎液滴粒径的数量密度分布与速度数量密度分布密切相关;射流旋转强度对破碎液滴粒径数量密度与速度数量密度分布结构影响不大,对破碎液滴粒径数量密度和速度数量密度的分布区域影响较大.   相似文献   

4.
王晓英  闻建龙 《实验力学》2013,28(3):347-351
本文分析了静电雾化锥射流模式下液锥表面静电应力、表面张力应力分布特性,基于应力平衡建立了液锥力学模型,并对流量、荷电电压及针形喷嘴的内半径等参数对液锥结构形态的影响进行了预测。首先设计了针形喷嘴静电雾化实验装置,应用高速摄影技术观测了静电雾化的典型雾化模式和液锥形态演化特性。实验结果表明:锥射流雾化模式仅在一定的荷电电压范围内才会出现;针形喷嘴的流量增加,液锥锥角减小,液锥长度增长;随着荷电电压或针形喷嘴内半径的增加,液锥锥角增大,液锥长度缩短。实验结果与液锥力学模型的预测结果一致。  相似文献   

5.
为了探索高温高压周向均布4股贴壁燃气射流在受限空间中的扩展特性,设计了贴壁燃气射流在圆柱形充液室内扩展的实验装置,借助数字高速录像系统,观察了4股贴壁燃气射流在充液室中的扩展过程,发现由Kelvin-Helmholtz不稳定性引起的表面不规则一直存在于整个射流扩展过程;通过处理拍摄记录的射流扩展序列图,获得不同时刻射流扩展的轴向和径向位移; 对比了不同破膜喷射压力和喷孔结构参数对4股贴壁燃气射流扩展过程的影响。实验结果表明:喷孔面积越大,贴壁射流初期轴向扩展速度越大,但由于径向扩展达到交汇的时间较早,湍流掺混和干涉强烈,衰减也越快;破膜喷射压力越高,射流径向扩展到达交汇的时间越短; 破膜喷射压力从12 MPa升高到20 MPa,射流轴向扩展速度大幅增加,气液湍流掺混效应增强。  相似文献   

6.
自振脉冲气液射流振动分析   总被引:2,自引:0,他引:2  
从提高射流利用率出发, 在自振脉冲水射流喷嘴振荡腔上开孔自吸入空气, 以形成一种自振脉冲气液射流, 研 究其振荡频率以及打击力的实际影响因素.基于水声学与流体动力学原理建立自振脉冲气液射流频率模型, 并以悬臂梁为靶物, 通过考察射流冲击悬臂梁时的振动特性获得其时域及频域特征.结果表明, 自振脉冲气液射流的振荡频率随腔长增加单调递减, 随含气率变化存在极小值, 且在初始段发生骤变, 实测值与理论值相吻合;对应自振脉冲气液射流产生最大谐振峰值的最优腔长略小于自振脉冲水射流, 且前者最大谐振峰值较后者明显提高.  相似文献   

7.
低速轴对称层流射流流动形态和失稳机制的实验研究   总被引:1,自引:1,他引:1  
本文应用染色液和悬浮粒子显示方法,进一步实验研究轴对称层流射流的流动形态及其失稳机制。首次成功地在从一定口径的喷嘴流出的低速轴对称层流射流中观察到环形回流流动。给出了射流随速度演化及实验容器边界对其流动形态影响的显示照片,发现实际射流的轴对称波动及失稳过程正好对应射流在容器底部产生的环形旋涡的生长和破碎过程。本文认为由于实验空间有限尺度对流动的限制改变了原来射流的流动形态和流场空间的拓扑性质,射流与实际边界的相互作用对实际射流的失稳和转捩有重要的影响。  相似文献   

8.
旋流内芯是压力旋流式喷嘴最主要的旋流发生构件,其几何特征直接影响压力旋流式喷嘴的喷雾特性.目前采用平滑型加速段的旋流内芯导流效率较低.为减小高流量条件下的能量损失,使喷嘴旋流内芯加速段对喷雾介质产生预旋效应,增强旋流强度,本文设计喷嘴旋流内芯加速段为阶梯型,其下段阶梯相对上段阶梯旋转15°,旋向与喷嘴旋流槽方向相同.利用粒子动态分析仪(particle dynamics analysis system,PDA)和高速摄影(charge coupled device,CCD)系统实验研究了加速段结构改进前后喷嘴的喷雾流量、雾场索特尔平均直径(Sauter mean diameter,SMD)、雾滴速度以及喷雾锥角,并分析了SMD、雾滴速度的轴向和径向分布特性.结果表明,背压差0.08~0.46 MPa范围内,阶梯型加速段对喷雾介质具有较好的预旋效果.喷嘴的流量提高了48.0%~51.8%;喷雾的轴向速度提升了31.4%~32.8%,径向速度提升了1.6%~16.8%;喷雾锥角减小了4.21°~6.57°;较高背压差下喷雾下游的SMD减小了9.8%.与平滑型加速段相比,阶梯型加速段的设计有效地提高了喷嘴的雾化质量.  相似文献   

9.
易灿  李根生  陈日吉 《实验力学》2005,20(2):291-296
自振空化射流是利用瞬态流和水声学原理调制而成的一种新型射流,为研究围压下自激振荡空化射流的冲蚀破碎规律,利用高压釜装置测量了1.0mm出口直径的风琴管自振空化喷嘴在各种射流参数情况下冲蚀铝试样的冲蚀质量,并与同等条件下锥形喷嘴冲蚀效率进行了对比。测量结果表明,冲蚀质量基本与射流压力成正比;存在最优喷距和围压,使得冲蚀效果最佳,在本实验条件,分别为喷嘴出口直径的5~7倍和2MPa左右;相同条件下,自振空化喷嘴冲蚀质量约为同等条件下锥形喷嘴冲蚀的1~2倍,这为自振空化射流提高钻井速度等实际应用提供了实验依据。  相似文献   

10.
高压旋转射流流动特性的实验研究   总被引:2,自引:0,他引:2  
测量了叶轮导引高压射流喷嘴在不同叶轮螺旋倾角和喷嘴收缩角下高压水的喷射形状参数,通过分析给陋了此种射流的外边界曲线方程形式及射流扩散角与叶轮螺旋倾角、喷嘴收缩角的关系,最后对射流机理进行了探讨,并给出一种微团轨道模型研究方法。  相似文献   

11.
Nonlinear instability and breakup of an annular liquid sheet has been modeled in this paper. The liquid sheet is considered to move axially and is exposed to co-flowing inner and outer gas streams. Also, the effect of outer gas swirl on sheet breakup has been studied. In the developed model a perturbation expansion method has been used with the initial magnitude of the disturbance as the perturbation parameter. This is a comprehensive model in that other geometries of planar sheet and a coaxial jet can be obtained as limiting cases of very large inner radius and inner radius equal to zero, respectively. In this temporal analysis, the effect of liquid Weber number, initial disturbance amplitude, inner gas-to-liquid velocity ratio, outer gas-to-liquid velocity ratio and outer gas swirl strength on the breakup time is investigated. The model is validated by comparison with earlier analytical studies for the limiting case of a planar sheet as well as with experimental data of sheet breakup length available in literature. It is shown that the linear theory cannot predict breakup of an annular sheet and the developed nonlinear model is necessary to accurately determine the breakup length. In the limiting case of a coaxial jet, results show that gas swirl destabilizes the jet, makes helical modes dominant compared to the axisymmetric mode and decreases jet breakup length. These results contradict earlier linear analyses and agree with experimental observations. For an annular sheet, it is found that gas flow hastens the sheet breakup process and shorter breakup lengths are obtained by increasing the inner and the outer gas velocity. Axially moving inner gas stream is more effective in disintegrating the annular sheet compared to axially moving outer gas stream. When both gas streams are moving axially, the liquid sheet breakup is quicker compared to that with any one gas stream. In the absence of outer gas swirl, the axisymmetric mode is the dominant instability mode. However, when outer gas flow has a swirl component higher helical modes become dominant. With increasing outer gas swirl strength, the maximum disturbance growth rate increases and the most unstable circumferential wave number increases resulting in a highly asymmetric sheet breakup with shorter breakup lengths and thinner ligaments.  相似文献   

12.
Liquid film thickness inside two swirl injectors for direct injection (DI) gasoline engines was measured at different injection pressure conditions ranging from 2.0 to 7.0 MPa and then previous analytical and empirical equations were examined from the experimental results. Based on the evaluation, a new equation for the liquid film thickness inside the swirl injectors was introduced. A direct photography using two real scale transparent nozzles and a pulsed light source was employed to measure the liquid film thickness inside the swirl injectors. The error in the liquid film thickness measurement, generated from different refractive indices among transparent nozzle, fuel and air, was estimated and corrected based on the geometric optics. Two injectors which have different nozzle diameter and nozzle length were applied to introduce a more general empirical equation for the liquid film thickness inside the pressure swirl injectors. The results showed that the liquid film thickness remains constant at the injection pressures for direct injection gasoline engines while the ratio of nozzle length to nozzle diameter (L/D) shows significant effect on the liquid film thickness. The previously introduced analytical and empirical equations for relatively low injection pressure swirl injectors overestimated the effect of injection pressure at the operating range of high pressure swirl injectors and, in addition, the effect of L/D ratio and swirler geometry was rarely considered. A new empirical equation was suggested based on the experimental results by taking into account the effects of fuel properties, nozzle diameter, nozzle length and swirler geometry.  相似文献   

13.
Numerical investigation of a perturbed swirling annular two-phase jet   总被引:1,自引:0,他引:1  
A swirling annular gas–liquid two-phase jet flow system has been investigated by solving the compressible, time-dependent, non-dimensional Navier–Stokes equations using highly accurate numerical methods. The mathematical formulation for the flow system is based on an Eulerian approach with mixed-fluid treatment while an adjusted volume of fluid method is utilised to account for the gas compressibility. Surface tension effects are captured by a continuum surface force model. Swirling motion is applied at the inlet while a small helical perturbation is also applied to initiate the instability. Three-dimensional spatial direct numerical simulation has been performed with parallelisation of the code based on domain decomposition. The results show that the flow is characterised by a geometrical recirculation zone adjacent to the nozzle exit and by a central recirculation zone further downstream. Swirl enhances the flow instability and vorticity and promotes liquid dispersion in the cross-streamwise directions. A dynamic precessing vortex core is developed demonstrating that the growth of such a vortex in annular configurations can be initiated even at low swirl numbers, in agreement with experimental findings. Analysis of the averaged results revealed the existence of a geometrical recirculation zone and a swirl induced central recirculation zone in the flow field.  相似文献   

14.
Local transport of the flow momentum and scalar admixture in the near-field of turbulent swirling jets (Re = 5,000) has been investigated by using a combination of the particle image velocimetry and planar laser-induced fluorescence methods. Advection and turbulent and molecular diffusions are evaluated based on the measured distributions of the mean velocity and concentration and the Reynolds stresses and fluxes. As has been quantified from the data, the flow swirl intensifies the entrainment of the surrounding fluid and promotes mass and momentum exchange in the outer mixing layer. A superimposed swirl results in the appearance of a wake/recirculation region at the jet axis and, consequently, the formation of an inner shear layer. In contrast to the scalar admixture, the momentum exchange in the inner shear layer is found to be strongly intensified by the swirl. For the jet with the highest considered swirl rate, a substantial portion of the surrounding fluid is found to enter the unsteady central recirculation zone, where it mixes with the jet that is issued from the nozzle. The contribution of the coherent velocity fluctuations, which are induced by large-scale vortex structures, to the turbulent transport has been evaluated based on triple decomposition, which was based on proper orthogonal decomposition analysis of the velocity data sets. For the considered domain of the jet with the highest swirl rate and vortex breakdown, the contributions of detected helical vortex structures, inducing pressing vortex core, to the radial fluxes of the flow momentum and the scalar admixture are found to locally exceed 65% and 80%, respectively.  相似文献   

15.
Gas injection into a cylindrical bath through a centric bottom nozzle causes a swirl motion like rotary sloshing. Conditions indicating the initiation and cessation of the swirl motion have been made clear by many researchers. So far, the effect of the swirl motion on transport phenomena in the bath is not clear yet. The present study was made to clarify the bubble characteristics (void fraction, bubble frequency) and liquid flow characteristics (mean velocity, turbulence intensity, Reynolds shear stress) during swirl motion of bubbling jet. These two characteristics were investigated using an electro-resistivity probe and a two-dimensional LDV, respectively.  相似文献   

16.
Air flow and pressure inside a pressure-swirl spray for direct injection (DI) gasoline engines and their effects on spray development have been analyzed at different injector operating conditions. A simulation tool was utilized and the static air pressure at the centerline of the spray was measured to investigate the static pressure and flow structure inside the swirl spray. To investigate the effect of static air pressure on swirl spray development, a liquid film model was applied and the Mie-scattered images were captured. The simulation and experiment showed that recirculation vortex and air pressure drop inside the swirl spray were observable and the air pressure drop was greater at high injection pressure. At high fuel temperature, the air pressure at the nozzle exit showed higher value compared to the atmospheric pressure and then continuously decreased up to few millimeters distance from the nozzle exit. The pressure drop at high fuel temperatures was more than that of atmospheric temperature. This reduced air pressure was recovered to the atmospheric pressure at further downstream. The results from the liquid film model and macroscopic spray images showed that the air pressure started to affect the liquid film trajectory about 3 mm from the nozzle exit and this effect was sustained until the air pressure recovered to the atmospheric pressure. However, the entrained air motion and droplet size have more significant influence on the spray development after the most of the liquid sheet is broken-up and the spray loses its initial momentum.  相似文献   

17.
This study investigates the experimentally observed hysteresis in the mean flow field of an annular swirling jet with a stepped‐conical nozzle. The flow is simulated using the Reynolds‐averaged Navier–Stokes (RANS) approach for incompressible flow with a k–ε and a Reynolds stress transport (RSTM) turbulence model. Four different flow structures are observed depending on the swirl number: ‘closed jet flow’, ‘open jet flow low swirl’, ‘open jet flow high swirl’ and ‘coanda jet flow’. These flow patterns change with varying swirl number and hysteresis at low and intermediate swirl numbers is revealed when increasing and subsequently decreasing the swirl. The influence of the inlet velocity profile on the transitional swirl numbers is investigated. When comparing computational fluid dynamics with experiments, the results show that both turbulence models predict the four different flow structures and the associated hysteresis and multiple solutions at low and intermediate swirl numbers. Therefore, a good agreement exists between experiments and numerics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the flow pattern change in an annular jet caused by a sudden change in the level of inlet swirl. The jet geometry consists of an annular channel followed by a specially designed stepped‐conical nozzle, which allows the existence of four different flow patterns as a function of the inlet swirl number. This paper reports on the transition between two of them, called the ‘open jet flow high swirl’ and the ‘Coanda jet flow.’ It is shown that a small sudden decrease of 4% in inlet swirl results in a drastic and irreversible change in flow pattern. The objective of this paper is to reveal the underlying physical mechanisms in this transition by means of numerical simulations. The flow is simulated using the unsteady Reynolds‐averaged Navier–Stokes (URANS) approach for incompressible flow with a Reynolds stress turbulence model. The analysis of the numerical results is based on a study of different forces on a control volume, which consists of the jet boundaries. The analysis of these forces shows that the flow pattern change consists of three different regimes: an immediate response regime, a quasi‐static regime and a Coanda regime. The simulation reveals that the pressure–tangential velocity coupling during the quasi‐static regime and the Coanda effect at the nozzle outlet during the Coanda regime are the driving forces behind the flow pattern change. These physical mechanisms are validated with time‐resolved stereo‐PIV measurements, which confirm the numerical simulations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Experiments were conducted using tufts and PIV to determine the conditions for which a swirled gas jet issuing from a sharp-edge nozzle, in flush with a base plate, would form a Coanda jet. The flow field was also simulated. The inception of the Coanda jet was observed to be associated with the formation of a recirculation bubble at the nozzle exit. A threshold value of swirl number, which increased monotonically with Reynolds number, was required for the formation of the Coanda jet. The Coanda jet was associated with hysteresis. The flow features and transition from a diverging jet to a Coanda jet are discussed.  相似文献   

20.
The main objective of this research is to study analytically and experimentally the liquid sheet breakup of a flat fan jet nozzle resulting from pressure-swirling. In this study the effects of nozzle shape and spray pressure on the liquid sheet characteristics were investigated for four nozzles with different exit widths (1.0, 1.5, 2.0 and 2.5 mm). The length of liquid sheet breakup, liquid sheet velocity and the size of formed droplets were measured by a digital high speed camera. The breakup characteristics of plane liquid sheets in atmosphere are analytically investigated by means of linear and nonlinear hydrodynamic instability analyses. The liquid sheet breakup process was studied for initial sinuous and also varicose modes of disturbance. The results presented the effect of the nozzle width and the spray pressure on the breakup length and also on the size of the formed droplets. Comparing the experimental results with the theoretical ones for all the four types of nozzles, gives a good agreement with difference ranges from 4% to 12%. Also, the comparison between the obtained results and the results due to others shows a good agreement with difference ranged from 5% to 16%. Empirical correlations have been deduced describing the relation between the liquid sheet breakup characteristics and affecting parameters; liquid sheet Reynolds number, Weber number and the nozzle width.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号