首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterned cocrystal monolayers self-assemble on HOPG in contact with solutions containing complementary pairs of 1,5-chain-substituted anthracene derivatives. Monolayer unit cells containing three or four molecules and spanning 9-11 nm are generated. The monolayers consist of alternating aromatic and aliphatic columns. The designs and dimensions of the cocrystal patterns (unit cells) are determined by (i) the preferred packing alignment of identical length side chains, (ii) the selectivity of each side chain for neighboring chains, (iii) the identities of the two side chains on each anthracene, and (iv) the 2D-chirality of 1,5-substituted anthracenes. The aliphatic columns form by interdigitation of identical length side chains arrayed in an antiparallel alignment, with the nth heavy atom of one side chain in registration with the (omega+2-n)th heavy atom of two adjacent chains ((omega <--> 2) packing). Adjacent side chains are attached, alternately, to anthracenes in one of the two flanking aromatic columns. The preference for (omega <--> 2) packing optimizes side-chain van der Waals interactions. The composition and fidelity of patterning in the cocrystal monolayers requires an additional source of "molecular recognition" in addition to side-chain length. Dipolar interactions, both attractive and repulsive, between ether groups in neighboring, (omega <--> 2) packed side chains, constitute a second recognition element needed for cocrystal self-assembly.  相似文献   

2.
Pyrene‐fused tetraazaporphyrins were synthesized from pyrene‐4,5‐dicarbonitrile precursors using a recently reported procedure as the key step for the asymmetric substitution of pyrene. Metal‐free, zinc‐ and lead‐centered pyrenocyanines were obtained and their optical properties as well as their molecular assembly in the solution and bulk phases and at the liquid/solid interface were studied. The characteristic Q‐band appears broadened, most likely owing to distortion of the molecule introduced by the steric demand of the angularly extended aromatic residue. The angular annulation does not bathochromically shift the Q‐band as far as would have been expected for the linear case. Peripheral substitution with linear and branched alkoxy chains affords solubility of the compounds in organic solvents. The influence of the distinct steric demand of the substituents on aggregation was investigated for metal‐centered pyrenocyanines by using temperature‐dependent 1H NMR and UV/Vis spectroscopy. The self‐assembly at the liquid/solid interface was studied using scanning tunneling microscopy. The alkoxy substituents facilitate the anchoring of these slightly non‐planar molecules on the surface of graphite. Pyrenocyanine molecules form well‐ordered 2D arrays in which the molecules are arranged in rows. The angular annulation of the pyrenocyanine residue leads to characteristic adsorption behavior at the liquid/solid interface, in which the molecules adsorb in two different adsorption geometries. The alkoxy side‐chains give rise to a discotic columnar superstructure and induce distinct thermotropic behavior. Dependent on the steric demand of the branched chains and the central metal atom, the molecules are rotated with respect to each other to form helical organization.  相似文献   

3.
A strategy for controlling relative placements of molecules within multicomponent monolayers at the solution-HOPG interface is demonstrated. The monolayers assemble from complementary pairs of 1,5-bis-alkyldiether-anthracenes bearing self-repelling side chains. Each diether side chain suffers repulsive dipolar interactions if it adsorbs next to an identical side chain in the morphology normally assumed by 1,5-bis-substituted-anthracene monolayers. Complementary side-chain pairs experience attractive dipolar interactions when adsorbed as neighbors in the normal morphology monolayer. The repulsive and attractive forces spontaneously drive formation of a patterned monolayer at the solution-HOPG interface. Each molecule adsorbs in its own row, sandwiched between two rows of the complementary anthracene. These studies demonstrate the viability of using weak dipolar interactions to control molecular placement and monolayer morphology and to pattern multicomponent monolayers.  相似文献   

4.
We show here by means of scanning tunneling microscopy (STM) at the liquid/solid interface that paracetamol and benzocaine molecules bearing a long aliphatic chain can be immobilized on highly oriented pyrolitic graphite (HOPG) as perfectly ordered two-dimensional domains extending over several hundreds of nanometers. In both cases, high-resolution STM images reveal that compounds 1 and 2 self-assemble into parallel lamellae having a head-to-head arrangement. The paracetamol heads of 1 are in a zigzag position with entangled n-dodecyloxy side chains while benzocaine heads of compound 2 are perfectly aligned as a double row and have their palmitic side chains on either sides of the head alignment. We attribute the very long-range ordering of these two pro-drug derivatives on HOPG to the combined effects of intermolecular H-bonding on one side and Van der Waals interactions between aliphatic side chains and graphite on the other side. The 2D immobilization of pro-drug derivatives via a non-destructive physisorption mechanism could prove to be useful for applications such as drug delivery if it can be realized on a biocompatible substrate.  相似文献   

5.
The thermodynamic characteristics of adsorption (TCA) of polymantane molecules and their some derivatives on the basis face of graphite were calculated for the first time in terms of the atom-atomic approximation of the semiempirical molecular statistical theory of adsorption. The graphite surface exhibits high structural selectivity to isomeric polymantanes. A model for adsorption of cage molecules on the planar surface was proposed. The model is based on the idea that contributions of atoms of the adsorbate molecule to the total adsorption energy can be discriminated according to the distance of these atoms from the surface of a solid. Advantages and limitations of using the data on adsorption of molecules of isomeric alkanes, including rotamers, for the analysis of equilibrium TCA values of isomeric polymantanes on graphite are discussed. The possibility of separation of representatives of the polymantane hydrocarbon family by gas adsorption chromatography on columns with graphitized thermal carbon black was suggested on the basis of the calculated TCA values and logarithmic retention indices.  相似文献   

6.
The supramolecular packing mode of physisorbed monolayers built up by chiral isophthalic acid derivatives and coadsorbed achiral solvent molecules was imaged at the liquid/graphite interface with scanning tunneling microscopy (STM). The picture on the right shows the submolecularly resolved STM image of an enantiomorphous domain composed of the R enantiomer of the isophthalic acid derivative studied and 1-heptanol molecules; the latter express the chirality of the monolayer. Upon adsorption a racemic mixture is separated into enantiomorphous domains.  相似文献   

7.
An anthracene cyclic dimer with two different linkers and a dodecyl group was synthesized by means of coupling reactions. The calculated structure had a planar macrocyclic π core and a linear alkyl chain. Scanning tunneling microscopy observations at the 1‐phenyloctane/graphite interface revealed that the molecules formed a self‐assembled monolayer that consisted of linear striped bright and dark bands. In each domain, the molecular network consisted of either Re or Si molecules that differed in the two‐dimensional chirality about the macrocyclic faces, which led to a unique conglomerate‐type self‐assembly. The molecular packing mode and the conformation of the alkyl chains are discussed in terms of the intermolecular interactions and the interactions between the molecules and the graphite surface with the aid of MM3 simulations of a model system.  相似文献   

8.
Pyrene-fused tetraazaporphyrins were synthesized from pyrene-4,5-dicarbonitrile precursors using a recently reported procedure as the key step for the asymmetric substitution of pyrene. Metal-free, zinc- and lead-centered pyrenocyanines were obtained and their optical properties as well as their molecular assembly in the solution and bulk phases and at the liquid/solid interface were studied. The characteristic Q-band appears broadened, most likely owing to distortion of the molecule introduced by the steric demand of the angularly extended aromatic residue. The angular annulation does not bathochromically shift the Q-band as far as would have been expected for the linear case. Peripheral substitution with linear and branched alkoxy chains affords solubility of the compounds in organic solvents. The influence of the distinct steric demand of the substituents on aggregation was investigated for metal-centered pyrenocyanines by using temperature-dependent (1)H NMR and UV/Vis spectroscopy. The self-assembly at the liquid/solid interface was studied using scanning tunneling microscopy. The alkoxy substituents facilitate the anchoring of these slightly non-planar molecules on the surface of graphite. Pyrenocyanine molecules form well-ordered 2D arrays in which the molecules are arranged in rows. The angular annulation of the pyrenocyanine residue leads to characteristic adsorption behavior at the liquid/solid interface, in which the molecules adsorb in two different adsorption geometries. The alkoxy side-chains give rise to a discotic columnar superstructure and induce distinct thermotropic behavior. Dependent on the steric demand of the branched chains and the central metal atom, the molecules are rotated with respect to each other to form helical organization.  相似文献   

9.
The adsorption of pyridine onto the Ge(100) surface has been studied using both real-time scanning tunneling microscopy (STM) and ab initio pseudopotential density functional calculations. The results show that pyridine molecules adsorb on the electron-deficient down-Ge atoms of the Ge=Ge dimers via Ge-N dative bonding, with the pyridine ring tilted to the surface. The electron-rich up-Ge atoms remaining after adsorption of pyridine induce an asymmetric dimer row, which is mainly reconstructed to the c(4 x 2) structure. At pyridine coverage of 0.25 ML, the adsorbed pyridine molecules form a perfectly ordered monolayer. The entire Ge substrate underlying this organic monolayer rearranges into the c(4 x 2) structure.  相似文献   

10.
High-resolution scanning tunneling microscopy has been used to examine the adsorbate structures formed when a racemic mixture of (9R,10R)-9,10-diiodooctadecan-1-ol and (9S,10S)-9,10-diiodooctadecan-1-ol is adsorbed at the basal plane of highly ordered pyrolytic graphite. The herringbone structure characteristic of the adsorption of long-chain molecules on graphite is observed. Close examination of the micrographs indicates a unique structure in which the chiral molecules adsorb in pairs, with one enantiomer filling half of the unit cell, and the other enantiomer filling the other half. Instead of forming separate chiral domains, as is sometimes observed when a racemic mixture adsorbs on an achiral surface, chiral pairs are formed and the pairs form an ordered monolayer, exposing opposite faces of the same molecule. An achiral racemic mixture is observed to form a chiral structure on an achiral surface in the regions of the surface examined here.  相似文献   

11.
The adsorption of individual Violet Lander molecules self‐assembled on the c(8×2) reconstructed InSb(001) surface in its native form and on the surface passivated with one to three monolayers of KBr is investigated by means of low‐temperature scanning tunneling microscopy (STM). Preferred adsorption sites of the molecules are found on flat terraces as well as at atomic step edges. For molecules immobilized on flat terraces, several different conformations are identified from STM images acquired with submolecular resolution and are explained by the rotation of the 3,5‐di‐tert‐butylphenyl groups around σ bonds, which allows adjustment of the molecular geometry to the anisotropic substrate structure. Formation of ordered molecular chains is found at steps running along substrate reconstruction rows, whereas at the steps oriented perpendicularly no intermolecular ordering is recorded. It is also shown that the molecules deposited at two or more monolayers of the epitaxial KBr spacer do not have any stable adsorption sites recorded with STM. Prospects for the manipulation of single molecules by using the STM tip on highly anisotropic substrates are also explored, and demonstrate the feasibility of controlled lateral displacement in all directions.  相似文献   

12.
Self-assembled monolayers of chrysene and indene on graphite have been observed and characterized individually with scanning tunneling microscopy (STM) at 80 K under low-temperature, ultrahigh vacuum conditions. These molecules are small, polycyclic aromatic hydrocarbons (PAHs) containing no alkyl chains or functional groups that are known to promote two-dimensional self-assembly. Energy minimization and molecular dynamics simulations performed for small groups of the molecules physisorbed on graphite provide insight into the monolayer structure and forces that drive the self-assembly. The adsorption energy for a single chrysene molecule on a model graphite substrate is calculated to be 32 kcal/mol, while that for indene is 17 kcal/mol. Two distinct monolayer structures have been observed for chrysene, corresponding to high- and low-density assemblies. High-resolution STM images taken of chrysene with different bias polarities reveal distinct nodal structure that is characteristic of the molecular electronic state(s) mediating the tunneling process. Density functional theory calculations are utilized in the assignment of the observed electronic states and possible tunneling mechanism. These results are discussed within the context of PAH and soot particle formation, because both chrysene and indene are known reaction products from the combustion of small hydrocarbons. They are also of fundamental interest in the fields of nanotechnology and molecular electronics.  相似文献   

13.
The effects of poly(vinyl alcohol) (PVA) on the Ostwald ripening of polycrystalline ice samples are studied. At -6 degrees C, ice recrystallization in sucrose solutions is inhibited at PVA concentrations down to 0.005 mg mL(-1), with a recrystallization inhibition constant of 48.9 mL mg(-1). Ice growth-habit experiments reveal molecular recognition of the arrangement of water molecules in the ice by PVA molecules, and indicate that PVA molecules adsorb to the primary and secondary prism faces of hexagonal ice, Ih. Based on these observations, together with an analysis of the O-atom pattern in ice and the conformation of OH groups in PVA, an adsorption model is proposed. We suggest that PVA segments adsorb to the primary and secondary prism faces of ice parallel to the c axis with a linear misfit parameter of only 2.7 %, most likely via multiple hydrogen bonds. The proposed adsorption mechanism is discussed in the light of recent thermal hysteresis and scanning tunneling microscopy experiments.  相似文献   

14.
Recent years have witnessed increasing interest in the field of asymmetric organocatalysis. In particular, efforts in this field have been devoted to the use of small organic molecules in asymmetric processes based on enantiotopic face discrimination and, only recently, efforts have also been devoted to asymmetric organocatalytic desymmetrization of prochiral substrates-a process based on enantiotopic group discrimination. This critical review documents the advances in the use of organocatalysis for the enantioselective desymmetrization of achiral and meso anhydrides and its application to the synthesis of valuable compounds as reported until 2010 (134 references).  相似文献   

15.
Adsorption isotherms and differential heats of normal pentane adsorption on microcrystalline rutile were measured at 303 K. The heat of adsorption of n-pentane on rutile at zero occupancy is 64 kJ/mol. The differential heats have three descending segments, corresponding to the adsorption of n-pentane on three types of surfaces. At low coverage (first segment), the adsorption is restricted to the rows A of the (110) faces along the 5-fold coordinatively unsaturated (cus) Ti(4+) ions with differential heat showing a linear decrease with increasing occupancy. The second segment is attributed to bonding with atoms of the rows along the remaining faces exposed, (101) and (100). The third segment is related to a multilayer adsorption. The mean molar adsorption entropy of n-pentane is ca. -25 J/mol K less than the entropy of the bulk liquid, thus revealing a hindered state of motion of the n-pentane molecules on the surface of rutile. Simulations of the adsorption of n-pentane on the three most abundant crystallographic faces of rutile were also performed. The adsorption isotherm obtained from the combination of each face's isotherm weighted by the respective abundance was found to be in a good agreement with the experimental data. A structural characterization of n-pentane near the surface was also conducted, and it was found that the substrate, especially for the (110) face, strongly perturbs the distribution of n-pentane conformations, compared to those found for the gas phase. Adsorbed molecules are predominantly oriented with their long axes and their backbone zigzag planes parallel to the surface and are also characterized by fewer gauche conformations than observed in the bulk phase.  相似文献   

16.
Self-assembled monolayers of carboxylic esters (stearic acid palmityl ester, lauric acid palmityl ester, and lauric acid behenyl ester) on graphite were investigated using scanning tunneling microscopy. All three esters, which are bent at the carboxylic group in the gas phase, are distorted into a straight-chain shape upon self-assembly on graphite. This results from optimizing the adsorption energy by matching the adsorbate molecular chain with the graphite substrate lattice periodicity. In all the formed lamellae, the long alkyl chain of the ester always aligns with the long chain of the adjacent molecule. Steric repulsion of the carbonyl group pointing perpendicularly to the neighboring molecule weakens the interaction of the ester molecule with the substrate. The ester molecules then easily self-assemble into multilamellae with molecular chain-trough angles of 73, 61, and 49 degrees in addition to the 90 degrees angle typical of n-alkane monolayers. This results from a shifting of 1/2, 1, or 3/2 units from the adjacent molecule in a lamella. The relatively weak interaction between ester molecules and substrate lattice also results in the formation of zigzag patterns with domain-domain angles of 145, 133, and 122 degrees , respectively. The structures of esters adsorbed on HOPG indicate, contrary to what might be expected, that physisorbed molecular adsorbates do not necessarily have the same geometry as in the gas phase.  相似文献   

17.
合成了一系列烷基取代的间苯三酚衍生物,并在大气条件下用扫描隧道显微镜研究了它们在高定向裂解石墨表面的吸附和组装行为.实验结果表明,这些自组装分子具有条状结构特征.在链长较短的分子图像中,两条平行的烷氧基链肩并肩地排列在苯环的一侧,另一条烷氧基链则排列在苯环的另一侧,链与链之间彼此相互交错排列形成均一的烷基条带.当链长增加时,这种高稳定性和密排结构遭到破坏,出现单个分子和分子对共存的组装结构.这是由于烷基链与烷基链之间以及烷基链与基底之间的作用力共同决定的.通过调控分子烷基链的长度可以得到不同的表面二维纳米结构.  相似文献   

18.
We describe the enantiomeric and enantiotopic analysis of the NMR spectra of compounds derived from the functionalized cone-shaped core, cyclotriveratrylenes (CTV), dissolved in weakly oriented lyotropic chiral liquid crystals (CLCs) based on organic solutions of poly-gamma-benzyl-L-glutamate. The CTV core lacks prostereogenic as well as stereogenic tetrahedral centers. However, depending on the pattern of substitution, chiral and achiral compounds with different symmetries can be obtained. Thus, symmetrically nonasubstituted CTVs (C(3) symmetry) are optically active and exhibit enantiomeric isomers, while symmetrically hexasubstituted (C(3v) symmetry) derivatives are prochiral and possess enantiotopic elements. In the first part we use (2)H and (13)C NMR to study two nonasubstituted (-OH or -OCH(3)) CTVs, where the ring methylenes are fully deuterated, and show for the first time that the observation of enantiomeric discrimination of chiral molecules with a 3-fold symmetry axis is possible in a CLC. It is argued that this discrimination reflects different orientational ordering of the M and P isomers, rather than specific chiral short-range solvent-solute interactions that may affect differently the magnetic parameters of the enantiomers or even their geometry. In the second part we present similar measurements on hexasubstituted CTV with flexible side groups (-OC(O)CH(3) and the, partially deuterated bidentate, -OCH(2)CH(2)O-), having on the average C(3v) symmetry. No spectral discrimination of enantiotopic sites was detected for the -OC(O)CH(3) derivative. This is consistent with a recent theoretical work (J. Chem. Phys. 1999, 111, 6890) that indicates that in C(3v) molecules no chiral discrimination between enantiotopic elements, based on ordering, is possible. In contrast, a clear splitting was observed in the (2)H spectra of the enantiotopic deuterons of the side groups in the tri(dioxyethylene)-CTV. It is argued that this discrimination reflects different ordering characteristics of the various, rapidly (on the NMR time scale) interconverting conformers of this compound. Assuming two twisted structures for each of the dioxyethylene side groups, four different conformers are expected, comprising two sets of enantiomeric pairs with, respectively, C(3) and C(1) symmetries. Differential ordering and/or fractional population imbalance of these enantiomeric pairs leads to the observed spectral discrimination of sites in the side chains that on average form enantiotopic pairs.  相似文献   

19.
In attempts at kinetically stabilizing blue-emissive anthracenes, a series of 9,10-diaryl substituted derivatives were tested for their photochemical and photooxidative persistence. A major breakthrough in light fastness comes from a new bis-meta-terphenylyl substituted anthracene which is much superior to industrially relevant 9,10-biarylated anthracenes. The key issue is the steric shielding of the anthracene core. Further, intramolecular ring closure via Yamamoto coupling furnished a doubly bridged anthracene as a “self-encapsulated” sky-blue emitter which is most resistant to photodegradation. The improved stabilization was corroborated by time-resolved irradiation experiments and rationalized by X-ray crystallography.  相似文献   

20.
The self-assembly of a series of hexadehydrotribenzo[12]annulene (DBA) derivatives has been investigated by scanning tunneling microscopy (STM) at the liquid/solid interface in the absence and presence of nanographene guests. In the absence of appropriate guest molecules, DBA derivatives with short alkoxy chains form two-dimensional (2D) porous honeycomb type patterns, whereas those with long alkoxy chains form predominantly dense-packed linear type patterns. Added nanographene molecules adsorb in the pores of the existing 2D porous honeycomb type patterns or, more interestingly, they even convert the guest-free dense-packed linear-type patterns into guest-containing 2D porous honeycomb type patterns. For the DBA derivative with the longest alkoxy chains (OC20H41), the pore size, which depends on the length of the alkoxy chains, reaches 5.4 nm. Up to a maximum of six nanographene molecules can be hosted in the same cavity for the DBA derivative with the OC20H41 chains. The host matrix changes its structure in order to accommodate the adsorption of the guest clusters. This flexibility arises from the weak intermolecular interactions between interdigitating alkoxy chains holding the honeycomb structure together. Diverse dynamic processes have been observed at the level of the host matrix and the coadsorbed guest molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号