首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interfacial properties of Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs, recently developed and described as promising nanotools for biomedical applications, have been investigated at the air/water interface. These Fe(3)O(4) NPs, capped with catechol-terminated random copolymer brushes of 2-(2-methoxyethoxy) ethyl methacrylate (MEO(2)MA) and oligo(ethylene glycol) methacrylate (OEGMA), with molar fractions of 90% and 10%, respectively, proved to be surface active. Surface tension measurements of aqueous dispersions of the NPs showed that the adsorption of the NPs at the air/water interface is time- and concentration-dependent. These NPs do not behave as classical amphiphiles. Once adsorbed at the air/water interface, they do not exchange with NPs in bulk, but they are trapped at the interface. This means that all NPs from the bulk adsorb to the interface until reaching maximum coverage of the interface, which corresponds to values between 6 × 10(-4) and 8 × 10(-4) mg/cm(2) and a critical equilibrium surface tension of ~47 mN/m. Moreover, Langmuir layers of Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs have been investigated by measuring surface pressure-area compression-expansion isotherms and in situ X-ray fluorescence spectra. The compression-expansion isotherms showed a plateau region above a critical surface pressure of ~25 mN/m and a pronounced hysteresis. By using a special one-barrier Langmuir trough equipped with two surface pressure microbalances, we have shown that the NPs are squeezed out from the interface into the aqueous subphase, and they readsorb on the other side of the barrier. The results have been supported by TEM as well as AFM experiments of transferred Langmuir-Schaefer films on solid supports. This study shows the ability of Fe(3)O(4)@MEO(2)MA(90)-co-OEGMA(10) NPs to transfer from hydrophilic media (an aqueous solution) to the hydrophobic/hydrophilic interface (air/water interface) and back to the hydrophilic media. This behavior is very promising, opening studies of their ability to cross biological membranes.  相似文献   

2.
Mono- and multilayers of a novel amphiphilic hexapyridinium cation with six eicosyl chains (3) are spread at the air/water interface as well as on highly ordered pyrolytic graphite (HOPG). On water, the monolayer of 3 is investigated by recording surface pressure/area and surface potential/area isotherms, and by Brewster angle microscopy (BAM). Self-organized tubular micelles with an internal edge-on orientation of molecules form at the air/water interface at low surface pressure whereas multilayers are present at high surface pressure, after a phase transition. Packing motifs suggesting a tubular arrangement of the constituting molecules were gleaned from atomic force microscopy (AFM) investigations of Langmuir-Blodgett (LB) monolayers being transferred on HOPG at different surface pressures. These LB film structures are compared to the self-assembled monolayer (SAM) of 3 formed via adsorption from a supersaturated solution, which is studied by scanning tunnelling microscopy (STM). On HOPG the SAM of 3 consists of nanorods with a highly ordered edge-on packing of the aromatic rings and an arrangement of alkyl chains which resembles the packing of molecules at the air/water interface at low surface pressure. Additional details of the molecular packing were gleaned from single-crystal X-ray structure analysis of the hexapyridinium model compound 2b, which possesses methyl instead of eicosyl residues.  相似文献   

3.
A new class of dendritic amphiphiles with multi‐hydrophilic head groups has been synthesized and characterized. The results from their surface pressure vs. area isotherms and hysteresis curves indicate that they form highly compressible and stable monolayers at the air‐water interface. The topology of dendritic monolayer and Langmuir‐Blodgett films was investigated by atomic force microscopy, which showed a highly ordered aggregation.  相似文献   

4.
Surface-pressure (Pi) and surface-area isotherms as a function of surface area were measured for monolayers of amphotericin B (AmB) and cholesterol mixtures at the air/water interface at 10, 20, and 30 degrees C. When chloroform/methanol was used as a spreading solvent, the Pi-A isotherms of the mixed monolayers exhibited characteristic transitions from the gas to liquid-expanded, then liquid-condensed, and finally the solid state. The expanding effect in monolayers was accompanied by a large Pi-A hysteresis and a positive excess of free energy of mixing at high Pi. At low Pi, a condensing effect was observed with the most significant deviation from ideality occurring at a mole fraction of AmB (XAmB) of 0.67. Free energy calculations revealed a condensing effect at low Pi and an expanding effect at high Pi except at 30 degrees C, where a condensing effect was observed for XAmB around 0.33. In contrast, when 2-propanol/water was used as spreading solvent, the mixed monolayers at 20 degrees C exhibited Pi-A isotherms which obey van der Waals equation of state, with no visible transitions, low hysteresis, a condensing effect, and a negative free energy of mixing. The most stable monolayers were produced from mixtures of AmB and cholesterol with a 2:1 stoichiometry.  相似文献   

5.
Interfacial elasticity and "dynamic" surface pressure isotherms were measured for interfaces between a dispersed water phase and a continuous phase of asphaltenes, toluene, and heptane. The interfacial modulus is a function of asphaltene concentration and in all cases reached a maximum at an asphaltene concentration of approximately 1 kg/m(3). The modulus increased significantly as the interface aged and slightly as the heptane content increased to a practical limit of 50 vol%. The modulus was approximately the same at 23 and 60 degrees C. The modulus correlated with the inverse of the initial compressibility determined from surface pressure isotherms. The surface pressure isotherms also indicated that a phase transition occurred as the interface was compressed leading to the formation of low compressibility films. Crumpling was observed upon further compression. The phase transition shifted to a higher film ratio with an increase in heptane content and interface age. Asphaltene concentration and temperature (23 and 60 degrees C) has little effect on the surface pressure isotherms. The surface pressure and elasticity measurements are consistent with the gradual formation of a cross-linked asphaltene network on the interface.  相似文献   

6.
Asphaltenes are present in heavy oils and bitumen. They are a mixture of hydrocarbons having complex structures of polyaromatic rings and short side chains. In general, the high-molecular-weight asphaltene is the most aromatic fraction with the highest number of side chains and the low-molecular-weight asphaltene contains the lowest number of side chains, while the number of side chains of the whole asphaltene fraction lies in between. In this study, asphaltenes were extracted and/or fractionated from Athabasca oil sand bitumen. Subfractions of high and low molecular weight and the whole asphaltenes were characterized using a Langmuir trough and complementary techniques such as VPO, FTIR, AFM, and contact angle measurements. At an air-water interface, amphiphilic asphaltene molecules can form a monolayer. Various fractions (high, low, and whole) of the asphaltene molecules behave similarly at the air-water interface, characterized by close resemblance of their surface pressure-area, hysteresis, and relaxation isotherms. The high-molecular-weight asphaltene is the most expanded fraction, while the low-molecular-weight asphaltene fraction is the most condensed, with the whole asphaltene lying in between. At the air-water interface a monolayer of the low-molecular-weight asphaltene relaxes at a faster rate than one of the high-molecular-weight asphaltene.  相似文献   

7.
Self-assembly of poly(ethylene oxide)-block-poly(epsilon-caprolactone) five-arm stars (PEO-b-PCL) was studied at the air/water (A/W) interface. The block copolymers consist of a hydrophilic PEO core with hydrophobic PCL chains at the star periphery. All the polymers have the same number of ethylene oxide repeat units (9 per arm), and the number of epsilon-caprolactone repeat units ranges from 0 to 18 per arm. The Langmuir monolayers were analyzed by surface pressure/mean molecular area isotherms, compression-expansion hysteresis experiments, and isobaric relaxation measurements, and the Langmuir-Blodgett (LB) films' morphologies were investigated by atomic force microscopy (AFM). PCL homopolymers crystallize directly at the A/W interface in a narrow surface pressure range (11-15 mN/m). In the same pressure region, the star-shaped block copolymers undergo a phase transition corresponding to the collapse and the crystallization of the PCL chains as shown by the presence of a pseudoplateau in the isotherms. The LB films were prepared by transferring the Langmuir monolayers onto mica substrates at various surface pressures. AFM imaging confirmed the formation of PCL crystals in the LB monolayers of the PCL homopolymers and of the copolymers, but also showed that the PCL segments can undergo additional crystallization after monolayer transfer during water evaporation. The PCL crystal morphologies were also strongly influenced by the surface pressure and by the PEO segments.  相似文献   

8.
The surface grafting of cellulose nanocrystals (CNC) is a valuable tool to increase opportunities for their application. This work had several goals designed to improve CNC: reduction of hornification, increased re-dispersibility after CNC drying, and tuning of the surface graft to enhance the adsorption of particular molecules. To achieve this, the CNC surfaces were modified chemically with aromatic surface grafts using widely employed methods: the creation of urethane linkages, silylation and esterification. Even a low degree of grafting sufficed to increase water contact angles to as much as 96°. The analysis of water sorption isotherms showed that at high water activities, capillary condensation could be suppressed and hysteresis was decreased. This indicates that hornification was significantly suppressed. However, although the contact angles increased, the water sorption isotherms were changed only slightly because of reduced hysteresis. The grafts were not able to shield the surface from water vapour sorption. A comparison of the sorption isotherms of anisole and cyclohexane, sorbates with a similar surface area, showed that the sorption of anisole was three times higher than that of cyclohexane. The specific sorption of aromatic molecules was achieved and the most efficient methodology was the esterification of CNC with carboxylic acids containing a flexible linker between the aromatic moiety and ester bond.  相似文献   

9.
Monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with normal long-chain alcohols at the air/water interface was analyzed by the Langmuir trough technique with the Brewster angle microscope (BAM) observations, and the pronounced stability enhancement of a HTMA-DS monolayer with the presence of the alcohol additives was demonstrated. Two normal long-chain alcohols with alkyl chain lengths of C16 and C18, 1-hexadecanol (HD) and 1-octadecanol (OD), were chosen as the additives. The surface pressure-area and surface potential-area isotherms of the monolayers with BAM images of monolayer morphology implied that the addition of either HD or OD with a comparatively small head group in a double-chained HTMA-DS monolayer at the interface led to better molecular packing and attractive interaction between the molecules, showing a similar condensing effect as that observed in mixed phospholipid/cholesterol systems. Moreover, the monolayer hysteresis and relaxation curves indicated that the incorporation of the alcohols into a HTMA-DS monolayer was able to lessen the monolayer hysteresis and to enhance the monolayer stability. In comparison with OD, HD seemed more effective as an additive in stabilizing a HTMA-DS monolayer, most likely due to the relatively better molecular packing of HTMA-DS and HD molecules at the interface. It is inferred that the stability of a monolayer or vesicular bilayer structure composed of IPAs can be improved by adjusting the molecular packing/interaction with a suitable long-chain alcohol as the additive.  相似文献   

10.
A polystyrene-b-poly(ethylene oxide) (PS-b-PEO) (MW = 141k, 11.4 wt% PEO) diblock copolymer in the hydrophobic regime was spread from chloroform solutions of various concentrations at the air-water interface, and the resultant monolayers were transferred to glass substrates and imaged using atomic force microscopy. Monolayers prepared under identical conditions were also characterized at the air-water interface via Langmuir compression isotherms. The effects of spreading solution concentration on surface features, compressibility, and limiting mean molecular area were determined, revealing several interesting trends that have not been reported for other systems of PS-b-PEO. Spreading solutions > or = 0.50 mg/mL resulted almost exclusively in dot and spaghetti morphologies, with no observed continent features, which have been commonly found in more hydrophobic systems. For lower spreading solutions, < or = 0.25 mg/mL, we observed a large predominance of two novel surface morphologies, nanoscale rings and chains. The surface pressure (pi)-area (A) isotherms also exhibited a unique dependence on the spreading solution concentration, with limiting mean molecular areas and isothermal compressibilities of PS-b-PEO monolayers increasing below a critical concentration of spreading solution, suggesting a greater contribution from the PEO blocks. These results suggest that PS chain entanglement prior to solvent evaporation plays an important kinetic role in the extent of PEO adsorption at the air-water interface and in the morphologies of the resulting self-assembled surface aggregates.  相似文献   

11.
A series of three-arm star block copolymers were examined using atomic force microscopy (AFM). These stars consisted of a polystyrene core composed of ca. 111 styrene units/branch with poly(ethylene oxide) (PEO) chains at the star periphery. Each star contained different amounts of PEO, varying from 107 to 415 ethylene oxide units/branch. The stars were spread as thin films at the air/water interface on a Langmuir trough and transferred onto mica at various surface pressures. Circular domains representing 2D micelle-like aggregated molecules were observed at low pressures. Upon further compression, these domains underwent additional aggregation in a systematic manner, including micellar chaining. At this point, domain area and the number of molecules/domain increased with increasing pressure. In addition, it was found that longer PEO chains led to greater intermolecular separation and less aggregation. These AFM results correspond to attributes seen in the surface pressure-area isotherms of the stars. In addition, they demonstrate the viability of AFM as a quantitative characterization technique.  相似文献   

12.
A new and direct approach to verify surface heterogeneity as the microscopic origin of contact-angle hysteresis is demonstrated. IR-visible sum-frequency-generation spectroscopy (SFG) was used to selectively probe the molecules at the interface of an alkyl-side-chain polymer [poly(vinyl n-octadecyl carbamate-co-vinyl acetate)] with water. The spectra indicate that in contact with water, the polymer surface is heterogeneous (having areas of differing surface energies). This evidence of surface heterogeneity supports the hysteresis observed in the advancing and receding contact angles of the polymer surface with water. The same measurements made for the chemically and structurally similar surface of an octadecyltrichlorosilane self-assembled monolayer indicates a homogeneous surface at the water interface. In this case, contact-angle hysteresis measurements implicate surface roughness as the cause of hysteresis. Atomic force microscopy measurements of roughness for these surfaces further support our conclusions. The polymer-water interface was probed using SFG at above-ambient temperatures, and an order-to-disorder transition (ODT) of alkyl side chains at the interface was observed, which closely follows the melting of crystalline side chains in the bulk. This transition explains the increased wettability of the polymer, by water, when the temperature is raised above the bulk melting temperature. Furthermore, the irreversibility of this ODT suggests that the disordered polymer-water interface is the thermodynamic equilibrium state, whereas the before-heating structure of this interface is a kinetically hindered metastable state.  相似文献   

13.
活性炭纤维的微孔结构水吸附   总被引:3,自引:0,他引:3  
测定了两种活性炭纤维(ACF)的氮气、水吸附等温线和XPS,研究了ACF的微孔结构和表面性质,用αs图分析氮吸附等温线获得了ACF的比表面积、微孔容量和微孔径。XPS表明在ACF表面存在多种不同结合状态的氧。水在ACF上的吸附等温线呈V型,具有很大的脱附滞后环。水通过与ACF表面的氧形成氢键发生吸附。ACF表面的初始吸附点多,则在低、中压时的水吸附量就大。  相似文献   

14.
The two-dimensional self-assembly at the air/water (A/W) interface of two dendrimer-like copolymers based on polystyrene and poly(tert-butyl acrylate) (PS-b-PtBA) or poly(acrylic acid) (PS-b-PAA) was investigated through surface pressure measurements (isotherms, isochores, and compression-expansion hysteresis experiments) and atomic force microscopy (AFM) imaging. The two dendrimer-like block copolymers have an 8-arm PS core (Mn = 10 000 g/mol, approximately 12 styrene repeat units per arm) with a 16-arm PtBA (Mn = 230 000 g/mol, approximately 112 tert-butyl acrylate repeat units per arm) or PAA (Mn = 129 000 g/mol, approximately 112 acrylic acid repeat units per arm) corona. The PS-b-PtBA sample forms stable Langmuir monolayers and aggregates into circular surface micelles up to a plateau observed in the corresponding isotherm around 24 mN/m. Beyond this threshold, the monolayers collapse above the interface, resulting in the formation of large and irregular desorbed aggregates. The PS-b-PAA sample has ionizable carboxylic acid groups, and its A/W interfacial self-assembly was therefore investigated for various subphase pH values. Under basic conditions (pH = 11), the carboxylic acid groups are deprotonated, and the PS-b-PAA sample is therefore highly water-soluble and does not form stable monolayers, instead irreversibly dissolving in the aqueous subphase. Under acidic conditions (pH = 2.5), the PS-b-PAA sample is less water-soluble and becomes surface-active. The pseudoplateau observed in the isotherm around 5 mN/m corresponds to a pancake-to-brush transition with the PAA chains dissolving in the water subphase and stretching underneath the anchoring PS cores. AFM imaging revealed the presence of circular surface micelles for low surface pressures, whereas the biphasic nature of the pseudoplateau region was confirmed with the gradual aggregation of the micellar PS cores above the PAA chains. The aggregation numbers for both samples were estimated around 3-5 dendrimer-like copolymers per circular surface micelle. These rather low values confirmed the tremendous influence of molecular architecture on the two-dimensional self-assembly of block copolymers.  相似文献   

15.
Wood JT  Alder JF 《Talanta》1992,39(11):1505-1509
Water sorption isotherms were obtained on surface acoustic wave sensors (SAWS) coated with aminopropyltriethyoxysilane (APTES), and on uncoated SAWS of which the substrate material was polished ST-quartz. The isotherms were obtained at 25 degrees , 30 degrees and 40 degrees over the range 1-80% relative humidity (RH). The isotherms exhibit BDDT type III characteristics typical of weak gas-solid interaction. The isotherms showed good fit to quadratic equations relating frequency change on exposure to humid air with relative humidity. There was no significant hysteresis in the isotherms when the SAWS was taken through a cycle of relative humidity at any of the three temperatures employed. These results are similar to those obtained in earlier work on FPOL and polyvinylpyrollidone coated SAWS. They demonstrate that a correction algorithm based on a quadratic equation should be possible to overcome water vapour response of coated SAWS.  相似文献   

16.
Four samples of MCM-41 mesoporous silicas whose average pore diameters are 2.4, 2.8, 3.2, and 3.6 nm were prepared using sodium orthosilicate and cationic surfactants of [CH(3)(CH(2))(n)N(CH(3))(3)]X (n=11, 13, 15, 17). These four samples were calcined at 1123 K in vacuo to obtain the dehydroxylated samples, which were further rehydroxylated at 298 K to obtain the rehydroxylated samples. The adsorption isotherms of nitrogen gas (77 K) for the 12 MCM-41 mesoporous silicas are of Type IVc, giving no adsorption hysteresis. On the other hand, the first adsorption isotherms of water vapor (298 K) for the dehydroxylated MCM-41 samples are quite different from those of nitrogen gas, giving the remarkable adsorption hysteresis. The second water isotherms for the rehydroxylated MCM-41 samples are of Type IV, showing slight hysteresis. Using the nitrogen isotherms, the relation between the pore size and carbon chain length of the surfactant has been determined, and the effect of dehydroxylation and rehydroxylation on the porous texture has been examined. Using the first and second water isotherms, the adsorption model of physisorbed waters adsorbed on the surface silanol groups has been proposed. From the pore size distribution curves of nitrogen and water, the presence of constrictions in the cylindrical pores has been predicted. Copyright 2000 Academic Press.  相似文献   

17.
Casein is well known to be a good protein emulsifier and β-casein is the major component of casein and commercial sodium caseinate. This work studies the behaviour of β-casein at the interface. The interfacial characteristics (structure and stability) of β-casein spread films have been examined at the air–water interface in a Langmuir-type film balance, as a function of temperature (5–40°C) and aqueous phase pH (pH 5 and 7). From surface pressure–area isotherms (πA isotherms) as a function of temperature we can draw a phase diagram. β-Casein spread films present two structures and the collapse phase. That is, there is a critical surface pressure and a surface concentration at which the film properties change significantly. This transition depends on the temperature and the aqueous phase pH. The film structure was observed to be more condensed and β-casein interfacial density was higher at pH 5. β-Casein films were stable at surface pressures lower than equilibrium surface pressure. In fact, no hysteresis was observed in πA isotherms after continuous compression-expansion cycles or over time. The relative area relaxation at constant surface pressure (10 or 20 mN m−1) and the surface pressure relaxation at constant area near the monolayer collapse, can be fitted by two exponential equations. The characteristic relaxation times in β-casein films can be associated with conformation–organization changes, hydrophilic group hydration and/or surface rheology, as a function of pH.  相似文献   

18.
The first and second adsorption–desorption isotherms of water vapor on a new mesoporous material derived from kanemite have been measured. The isotherms show unusual type V isotherms and large hysteresis. The type V isotherms, which have never been observed for the other adsorbates, suggest that the mesoporous material has a hydrophobic surface, although the hydrophobicity decreased after treatment with water vapor because of rehydration of the surface. The significantly large hysteresis could be explained by the difference in contact angle between adsorption and desorption.  相似文献   

19.
We report on the interesting interfacial behavior of oligoethylene glycol or OEGylated linear dendron monolayers at the air-water interface as a function of (a) carbazole dendron generation, (b) the length of the OEG units, and (c) the surface pressure applied upon compression. Surface pressure-area isotherms, hysteresis studies, and isobaric creep measurement revealed a structure-property relationship consistent with the hydrophilic-lipophilic balance of a linear dendron with the OEG group serving as the surface anchor to the water subphase. AFM studies revealed that all the OEGylated carbazole dendrons self-assemble into spherical morphology at low surface pressures but form ribbonlike structures as the surface pressure is increased. This nanostructuring is primarily imparted by the increase in van der Waals forces with increasing amount of carbazole units per dendron generation on a hydrophilic mica surface. Further, electrochemical cross-linking of the carbazole molecules by cyclic voltammetery (CV) on doped Si wafer has enabled the formation of an LB film monolayer with a secondary level of organization in the monolayer imparted by the inter- and intramolecular cross-linking among the carbazole units. This study should provide a basis for monolayer film materials based on combining the LB technique and electrochemical cross-linking for nanostructuring superstructures at the air-water interface.  相似文献   

20.
Pulmonary functions such as rapid adsorption, respreading, and hysteresis behavior of pulmonary surfactants are very important for respiratory movement. The interfacial behavior of pulmonary preparations containing an amphiphilic peptide (Hel 13-5) has recently investigated. An orientation of hydrophobic chains in a dipalmitoylphosphatidylcholine (DPPC) with or without palmitic acid (PA) is associated with a collapse of alveoli during respiration process. Therefore, the present study focused on the acyl chain orientation in model pulmonary surfactants (DPPC/Hel 13-5 and DPPC/PA/Hel 13-5). A successive change in the orientation during cyclic compression and expansion of films at the air-water interface can be probed directly by an infrared reflection-absorption spectrometry (IRRAS) technique. The hysteresis behavior, one of very important pulmonary functions, was previously observed in surface pressure (pi)-molecular area (A) isotherms for the both model pulmonary surfactant systems (Langmuir 22(2006)1182-1192 and Langmuir 22(2006)5792-5803). In addition, it was reported that Hel 13-5 was squeezed-out of the surface on compression like native pulmonary surfactant proteins. The data obtained for the binary and ternary systems were compared with those of the equivalent pure DPPC and DPPC/PA mixtures, respectively. For an asymmetric methylene stretching vibration (nu(a)-CH(2)) RA intensity, the absolute RA values increased with shifting to small surface area, monotonously. For the corresponding wavenumber, on the other hand, the values gradually decreased into approximately 2920cm(-1). However, they were kept constant in the squeeze-out region in spite of a further decrease of surface area. These results suggested that the orientation of hydrophobic chains in DPPC and DPPC/PA mixtures became in the most packed state soon after emergence of the squeeze-out process of Hel 13-5 and then the packed orientation was retained up to the collapse state. This indicated that the squeezed-out Hel 13-5 stabilized monolayers left at the interface. For the DPPC/PA/Hel 13-5 system, in particular, dissociated PA molecules were excluded together with Hel 13-5 and the surface monolayers were refined to DPPC and undissociated PA components during the compression process. And the similar behavior in the second and third cycles supported the good respreading ability of the monolayers containing Hel 13-5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号