首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intermediate diradicals which occur in the Paterno-Büchi photocycloaddition and in the Norrish type I photoreactions have been calculated taking into account the spin-orbit coupling (SOC) between the singlet (S) and triplet (T) states. Reaction paths for the photocycloaddition of formaldehyde to ethene and the diradical products of the -cleavage of cyclohexanone have been optimized by the MNDO CI method for a number of different singlet and triplet states. SOC integrals are calculated by an effective one-electron approximation. Intermediate diradicals in the Paterno-Büchi reaction and the SOC effects are also studied ab initio with CAS SCF geometry optimization in a TZV basis set. Both methods predict a large SOC matrix element between the S and T states in the course of the C-C attack, while the SOC integral is two orders of magnitude smaller for the diradical produced in the C-O attack. In the Norrish type I photoreaction the oxygen atom also produces some nonzero contribution to the SOC integral which governs intersystem crossing in a ·C-C· diradical. For the diradicals produced by the -cleavage of cyclohexanone a vibronic interaction is responsible for the SOC mixing between the lowest S and T states. The importance of one-center versus two-center SOC contributions in diradicals is briefly discussed.  相似文献   

2.
Intermediate diradicals which occur in the Paterno–Büchi photocycloaddition and in the Norrish type I photoreactions have been calculated taking into account the spin–orbit coupling (SOC) between the singlet (S) and triplet (T) states. Reaction paths for the photocycloaddition of formaldehyde to ethene and the diradical products of the α-cleavage of cyclohexanone have been optimized by the MNDO CI method for a number of different singlet and triplet states. SOC integrals are calculated by an effective one-electron approximation. Intermediate diradicals in the Paterno–Büchi reaction and the SOC effects are also studied ab initio with CAS SCF geometry optimization in a TZV basis set. Both methods predict a large SOC matrix element between the S and T states in the course of the C–C attack, while the SOC integral is two orders of magnitude smaller for the diradical produced in the C–O attack. In the Norrish type I photoreaction the oxygen atom also produces some nonzero contribution to the SOC integral which governs intersystem crossing in a ·C–C· diradical. For the diradicals produced by the α-cleavage of cyclohexanone a vibronic interaction is responsible for the SOC mixing between the lowest S and T states. The importance of one-center versus two-center SOC contributions in diradicals is briefly discussed.  相似文献   

3.
Six new potential energy surfaces of four singlet states and two triplet states for the title oxygen molecule reaction along with the spin-orbit coupling among them have been constructed from the complete active space second-order perturbation theory with a 6-311+G(d) basis. Accurate integral cross sections are calculated with a full six-dimensional nonadiabatic time-dependent quantum wave packet method. The thermal rate constant based on the integral cross sections agrees well with the result of the experimental measurements, and the intersystem crossing effects are also discussed in this electronic energy-transfer process.  相似文献   

4.
Singlet and triplet low-lying states of the 4-dimethylaminobenzonitrile and its derivatives have been studied by the density functional theory and ab initio methodologies. Calculations reveal that the existence of the methyl groups in the phenyl ring and the amino twisting significantly modify properties of their excited states. A twisted singlet intramolecular charge-transfer state can be accessed through decay of the second planar singlet excited state with charge-transfer character along the amino twisting coordinate or by an intramolecular charge-transfer reaction involved with a locally first excited singlet state. Plausible charge-transfer triplet states and intersystem crossing processes among singlet and triplet states have been explored by spin-orbit coupling calculations. The intersystem crossing process was predicted to be the dominant deactivation channel of the photoexcited 4-dimethylaminobenzonitrile.  相似文献   

5.
This paper presents computational evidence for the occurrence of diradical mechanism of self-initiation in thermal polymerization of methyl methacrylate. Two self-initiation mechanisms of interest were explored with first-principles density functional theory calculations. Singlet and triplet potential energy surfaces were constructed. The formation of two Diels-Alder adducts, cis- and trans-dimethyl 1,2-dimethylcyclobutane-1,2-dicarboxylate and dimethyl 2-methyl-5-methylidene-hexanedioate, on the singlet surface was identified. Transition states were calculated using B3LYP/6-31G* and assessed using MP2/6-31G*. The calculated energy barriers and rate constants with different levels of theory were found to show good agreement to corresponding data obtained from laboratory experiments. The presence of a diradical intermediate on the triplet surface was identified. When MCSCF/6-31G* was used, the spin-orbit coupling constant for the singlet to triplet crossover was calculated to be 2.5 cm(-1). The mechanism of monoradical generation via a hydrogen abstraction by both triplet and singlet diradicals from a third monomer was identified to be the most likely mechanism of initiation in spontaneous polymerization of methyl methacrylate.  相似文献   

6.
The population of the lowest triplet state of thymine after near-UV irradiation has been established, on the basis of CASPT2//CASSCF quantum chemical calculations, to take place via three distinct intersystem crossing mechanisms from the initially populated singlet bright 1pipi* state. Two singlet-triplet crossings have been found along the minimum-energy path for ultrafast decay of the singlet state at 4.8 and 4.0 eV, involving the lowest 3npi* and 3pipi* states, respectively. Large spin-orbit coupling elements predict efficient intersystem crossing processes in both cases. Another mechanism involving energy transfer from the lowest 1npi* state with much larger spin-orbit coupling terms can also be proposed. The wavelength dependence measured for the triplet quantum yield of pyrimidine nucleobases is explained by the location and accessibility of the singlet-triplet crossing regions.  相似文献   

7.
1 INTRODUCTION 2-Methylfuran belongs to the basic heteroaromatic compounds relevant to many fields of modern che- mistry, ranging from the study of natural products and biologically active substances to the develop- ment of building blocks for organic synthesis and conducting polymers[1]. Since the photochemistry ofR-furan was gradually recognized in 1960s[2~7], lots of interest has been aroused. Herein we only study one branch of photoche- mistry of R-furan: the isomerization of 2-methy…  相似文献   

8.
The experimental ultrafast photophysics of thioxanthone in several aprotic organic solvents at room temperature is presented, measured using femtosecond transient absorption together with high‐level ab initio CASPT2 calculations of the singlet‐ and triplet‐state manifolds in the gas phase, including computed state minima and conical intersections, transition energies, oscillator strengths, and spin–orbit coupling terms. The initially populated singlet ππ* state is shown to decay through internal conversion and intersystem crossing processes via intermediate nπ* singlet and triplet states, respectively. Two easily accessible conical intersections explain the favorable internal conversion rates and low fluorescence quantum yields in nonpolar media. The presence of a singlet–triplet crossing near the singlet ππ* minimum and the large spin–orbit coupling terms also rationalize the high intersystem crossing rates. A phenomenological kinetic scheme is proposed that accounts for the decrease in internal conversion and intersystem crossing (i.e. the very large experimental crescendo of the fluorescence quantum yield) with the increase of solvent polarity.  相似文献   

9.
The photophysics of the 1-nitronaphthalene molecular system, after the absorption transition to the first singlet excited state, is theoretically studied for investigating the ultrafast multiplicity change to the triplet manifold. The consecutive transient absorption spectra experimentally observed in this molecular system are also studied. To identify the electronic states involved in the nonradiative decay, the minimum energy path of the first singlet excited state is obtained using the complete active space self-consistent field∕∕configurational second-order perturbation approach. A near degeneracy region was found between the first singlet and the second triplet excited states with large spin-orbit coupling between them. The intersystem crossing rate was also evaluated. To support the proposed deactivation model the transient absorption spectra observed in the experiments were also considered. For this, computer simulations using sequential quantum mechanic-molecular mechanic methodology was used to consider the solvent effect in the ground and excited states for proper comparison with the experimental results. The absorption transitions from the second triplet excited state in the relaxed geometry permit to describe the transient absorption band experimentally observed around 200 fs after the absorption transition. This indicates that the T(2) electronic state is populated through the intersystem crossing presented here. The two transient absorption bands experimentally observed between 2 and 45 ps after the absorption transition are described here as the T(1)→T(3) and T(1)→T(5) transitions, supporting that the intermediate triplet state (T(2)) decays by internal conversion to T(1).  相似文献   

10.
Molecules with luminescence have been extensively investigated, but the luminescence of a stable molecule with a triplet ground state has not been observed. Synthesis of boron-containing radicals has attracted lots of interest because of their unique electronic structures and potential applications in organic semiconductors. Though some boron-based diradicals have been reported, neutral boron-containing diradicals with triplet ground states are rare. Herein two borocyclic diradicals with different substituents (3 and 4) have been isolated. Their electronic structures were investigated by EPR and UV spectroscopy, and SQUID magnetometry, in conjunction with DFT calculations. Both experiment and calculation suggest that 3 is an open shell singlet diradical while 4 is a triplet ground state diradical with a large singlet–triplet gap (0.25 kcal mol−1). Both diradicals show multi fluorescence peaks (3: 414, 431, and 470 nm; 4: 420, 433, and 495 nm). 3 displays multiple redox steps and is a potential material towards the design of high-density memory devices. 4 represents the first example of a neutral triplet boron-containing diradical with a strong ferromagnetic interaction, and also is the first stable triplet diradical emitter.

Stable borocyclic diradical emitters with a tunable ground state.  相似文献   

11.
Among the most important of chemical intermediates are the carbenes, characterized by a divalent carbon that generates low-lying biradical (triplet) and spin-paired (singlet) configurations with unique chemical reactivities. The "holy grail" of carbene chemistry has been determining the singlet-triplet gap and intersystem crossing rates. We report here the first high resolution spectra of singlet-triplet transitions in a prototypical singlet carbene, CHCl, which probe in detail the triplet state structure and spin-orbit coupling with the ground singlet state. Our spectra reveal a pronounced vibrational state dependence of the triplet state spin-spin splitting parameter, which we show is a sensitive probe of spin-orbit coupling with nearby singlet states. The parameters derived from our spectra, including a precise determination of the singlet-triplet energy gap, are in excellent agreement with recent ab initio calculations.  相似文献   

12.
We present for the first time an exact quantum study of spin-orbit-induced intersystem crossing effects in the title reaction. The time-dependent wave-packet method, combined with an extended split operator scheme, is used to calculate the fine-structure resolved cross section. The calculation involves four electronic potential-energy surfaces of the 1A' state [J. Dobbyn and P. J. Knowles, Faraday Discuss. 110, 247 (1998)], the 3A' and the two degenerate 3A" states [S. Rogers, D. Wang, A. Kuppermann, and S. Wald, J. Phys. Chem. A 104, 2308 (2000)], and the spin-orbit couplings between them [B. Maiti, and G. C. Schatz, J. Chem. Phys. 119, 12360 (2003)]. Our quantum dynamics calculations clearly demonstrate that the spin-orbit coupling between the triplet states of different symmetries has the greatest contribution to the intersystem crossing, whereas the singlet-triplet coupling is not an important effect. A branch ratio of the spin state Pi32 to Pi12 of the product OH was calculated to be approximately 2.75, with collision energy higher than 0.6 eV, when the wave packet was initially on the triplet surfaces. The quantum calculation agrees quantitatively with the previous quasiclassical trajectory surface hopping study.  相似文献   

13.
Photoinduced absorption shows that triplets are the primary photoexcited species in a series of conjugated liquid crystals containing thiophene and fluorene groups. We find that the triplet generation rate can be varied substantially by molecular design. The introduction of extra thiophene groups into the elongated molecules changes the intersystem crossing rate by over two orders of magnitude, while modifying the singlet and triplet energies by only small amounts. This result is attributed to the high spin-orbit coupling constant of sulfur: An increase in the number of sulfur atoms increases the spin-orbit coupling between the singlet and triplet states. These results are relevant to the design of organic light emitting diodes, lasers, and other devices where triplet formation has a major impact on device performance. The molecules are shown to act as effective electron donors when blended with a perylene molecule which acts as an electron acceptor. The electron transfer rate is faster than the singlet lifetime so that the blend shows the efficient charge separation required for a photovoltaic device.  相似文献   

14.
The hydrogen-transfer reaction of W + NH(3) incorporates four possible diabatic reaction pathways along with septet, quintet, triplet, and singlet states. The intersystem crossings thus play an important role in the reaction mechanisms. In this work, ab initio and DFT methods are used to determine all possible intermediates, transition states, products, and intersystem crossing points as well as the spin-orbit couplings. The mechanism of hydrogen elimination is further revealed by the natural bond orbital analysis. From the rate constants yielded by a nonadiabatic transition state theory, we find that two intersystem crossings significantly change the reaction pathways. Finally, we suggest a feasible reaction pathway with exothermicity 72.8 kcal/mol, which is consistent with the experimental measurements.  相似文献   

15.
A comprehensive study of the photophysical properties of a series of monoaza[5]helicenes is presented on the basis of joint optical spectroscopy and quantum chemistry investigations. The molecules have been characterized by absorption and CW/time-resolved luminescence measurements. All quantities related to spin-orbit-coupling processes, such as intersystem crossing rates and radiative phosphorescence lifetimes, were found to depend strongly on the nitrogen position within the carbon backbone. Density functional theory and semiempirical quantum-chemical methods were used to evaluate the molecular geometries, the characteristics of the excited singlet and triplet states, and the spin-orbit coupling matrix elements. We demonstrate that the magnitude of spin-orbit coupling is directly correlated with the degree of deviation from planarity. The trends from the calculated photophysical quantities, namely, radiative fluorescence and phosphorescence decay rates and intersystem crossing rates, of the mono-aza-helicenes are fully consistent with experiment.  相似文献   

16.
The various isomers including stable structures, carbenes, and diradicals on the C3H4 surface have been investigated. The two carbenes propenylidene and cyclopropylidene have been found to have singlet ground states. Vinylmethylene is predicted to have a triplet ground state with a planar diradical type of structure. The syn and anti forms of this state are degenerate. This is in agreement with the observation of two triplet states in the electron spin resonance (ESR ) spectra. The π electrons are found to be delocalized over the three carbons. The singlet diradical structures are found to be more stable than the carbene structures, which retain the CH2 (DOUBLE BOND) CH allylic structures. The orbital compositions of the frontier orbitals of all systems have been determined to examine the nature of these orbitals. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
Two coherent sequential IR+UV laser pulses may be used to generate two time-dependent nuclear wave functions in electronic excited triplet and singlet states via single (UV) and two photon (IR+UV) excitation pathways, exploiting spin-orbit coupling and vibrational pre-excitation, respectively. These wave functions evolve from different Franck-Condon domains until they overlap in a domain of bond stretching with efficient intersystem crossing. Here, the coherence of the laser pulses is turned into optimal interferences of the wave packets, yielding the total wave packet at the target place, time, and with dominant target spin. The time resolution of spin control is few femtoseconds. The mechanism is demonstrated by means of quantum model simulations for ClF in an Ar matrix.  相似文献   

18.
Two novel boron-centered diradicals based on dimesitylpyridine borane ( 1 ) were synthesized by the self-assembling of the corresponding radical sodium and potassium salts, respectively. The sodium diradical was obtained by re-dissolving the crystals of the radical salt 1Na in toluene, while the potassium diradical was directly obtained by the reduction of 1 with potassium in THF. The diradicals could be converted back to their radical anions in THF solution, forming a reversible process. EPR spectroscopy and SQUID measurements, together with theoretical calculations, show that the diradicals have singlet ground states with excited triplet states. Their singlet–triplet energy gaps are tunable with metals.  相似文献   

19.
We address the possibility of populating the lowest triplet state of cytosine by an "intrinsic"mechanism, namely, intersystem crossing (ISC) along the ultrafast internal conversion pathway of the electronically excited singlet species. For this purpose, we present a discussion of the ISC process and triplet-state reactivity based on theoretical analysis of the spin-orbit strength and the potential energy surfaces for the relevant singlet and triplet states of cytosine. High-level ab initio computations show that ISC is possible in wide regions of the singlet manifold along the reaction coordinate that controls the ultrafast internal conversion to the ground state. Thus, the ISC mechanism documented here provides a possibility to access the triplet state, which has a key role in the photochemistry of the nucleic acid bases.  相似文献   

20.
The effect of replacing the phenyl group(s) of trans-stilbene with thienyl groups, or polycyclic groups containing a thienyl moiety, on the relaxation properties of the lowest excited states was studied by fluorometric, photochemical and laser flash photolysis techniques, as well as by theoretical calculations, for four trans compounds in non-polar and polar solvents. In some cases, a larger contribution of intersystem crossing and, consequently, a triplet mechanism to trans → cis photoisomerization, with respect to the parent hydrocarbons, was found. Although the compound with a single thienyl group, 2-styrylthiophene, shows reactive relaxation in the singlet manifold as in the case of stilbene, the presence of two heteroaromatic rings in di(2-thienyl)ethene enhances the spin-orbit coupling, thus leading to a mixed singlettriplet mechanism in non-polar solvents. The presence of polycondensed rings in dibenzothienylethene and thienyl-naphthothienylethene reduces the isomerization yield due to an increase in the torsional barrier for twisting in the singlet manifold. Therefore these compounds deactivate mainly through fluorescence emission and intersystem crossing, which leads to a predominant triplet mechanism for trans → cis photoisomerization. Polar solvents reduce the activation barrier to twisting, thus favouring isomerization in the singlet manifold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号