首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The thermal properties of 2,4-hexadiynyl-1,6-bis(p-toluenesulfonate) have been explored by program temperature and isothermal differential calorimetry. The heat of fusion for the rapidly heated pure solid was 8254 cal/mole (34,540 J/mole) at 367.1°K (93.8°C). This amounts to an entropy change of 22.5 cal/mole °K (94.1 J/mole °K). The energy of activation for the thermal polymerizations was 18.97 kcal/mole (79.37 kJ/mole). The thermal polymerization appears to follow a solid–solid phase transition which proceeds by random homogeneous nucleation throughout the process. The kinetics were simple first order over 70% of the reaction. Programmed temperature studies indicate that during the first 10% of the polymerization a new high temperature (mp 375.4°K) solid phase is formed which acts as the monomer form during the bulk of the reaction.  相似文献   

2.
The paper presents the results of Dynamic-Mechanical Thermal Analysis (DMTA) for a selected methacrylate adhesive at the frequency range from 1 to 50?Hz and the heating rate of 1 and 3?°C/min, in the range from –70?°C to 180?°C. On the basis of the test results, the glass transition temperature was evaluated for three calculation methods. Master curves were also designated for three different reference temperatures: –20, +20 and +60?°C. Master curves were calculated using shift factors aT - calculated by numerical method.  相似文献   

3.
The kinetics of Hg(II)‐catalyzed reaction between hexacyanoferrate(II) and nitroso‐R‐salt has been followed spectrophotometrically by monitoring the increase in absorbance at 720 nm, the λmax of green complex, [Fe(CN)5 N‐R‐salt]3? as a function of pH, ionic strength, temperature, concentration of reactants, and the catalyst. In this reaction, the coordinated cyanide ion in hexacyanoferrate(II) gets replaced by incoming N‐R‐salt under the following specified reaction conditions: temperature = 25 ± 0.1°C, pH = 6.5 ± 0.2, and I = 0.1 M (KNO3). The stoichiometry of the complex has been established as 1:1 by mole ratio method. The rate of catalyzed reaction is slow at low pH values and then increases with pH and attains a maximum value between 6.5 and 6.7. The rate finally falls again at higher pH values due to nonavailability of [H+] ions needed to regenerate the catalytic species. The rate of reaction increases initially with [N‐R‐salt] and attains a maximum value and then levels off at higher [N‐R‐salt]. The rate of reaction shows a variable order dependence in [Fe(CN)64?] ranging from unity at lower concentration to 0.1 at higher concentrations. The effect of [Hg2+] on the reaction rate shows a complex behavior and the same has been explained in detail. The activation parameters for the catalyzed reactions have been evaluated. A most plausible mechanistic scheme has been proposed based on the experimental observations. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 222–232, 2005  相似文献   

4.
The polycondensation of 3-(4-hydroxy phenyl)-propionic acid, 4-Hypp, by means of acetanhydride or acetylchloride was conducted either in the presence or in the absence of a liquid reaction medium. DSC measurements, polarizing microscope, and X-ray diffraction studies indicate poly(4-Hypp) possesses at about 215°C a reversible first order transition between two solid phases. Copolyesters containing various mole ratios of 4-Hypp and 4-hydroxy benzoic acid, 4-Hybe, were prepared by bulk condensation with acetanhydride at 320°C. At 4-Hypp/4-Hybe ratios less than 1.0:1.5 the reaction product was heterogeneous, containing crystals of pure poly(4-Hybe). Neither increasing the reaction time nor the variation of the transesterification catalyst resulted in an entirely homogeneous copolyester. However, for 4-Hypp/4-Hybe ratios greater than 1.0:1.5, 13C NMR spectra indicate perfectly random sequences. Also, terpolyesters containing 3-chloro-4-hydroxy- or 3,5-dichloro-4-hydroxy-benzoic acid were heterogeneous with less than 30 mol % 4-Hypp. DSC measurements revealed for all polyesters a glass transition in the range of 55–78°C. Temperature dependent X-ray diffraction studies confirm that the solid phase is a s.c. LC-glss. Correspondingly low heat distortion temperatures were found by thermomechanical analyses. The copolyesters display under the polarizing microscope LC-phase up to temperatures of 450–480°C, where rapid thermal degradation prevents further investigations. In the case of the 4-Hypp/4-Hybe 1:1 copolyester, the LC-phase extends over a temperature range of about 400°C. TGA measurements indicate beginning thermal degradation at temperatures between 350 and 380°C.  相似文献   

5.
选择分析纯烟酸和无水醋酸钠作为反应物, 用室温固相合成方法合成了无水烟酸钠. 利用FTIR和X射线粉末衍射等方法进行了表征, 利用化学分析和元素分析确定其组成为Na(C6H4NO2). 用精密自动绝热热量计测量其在78~400 K温度区间的低温热容. 研究结果表明, 该化合物在此温度区间无热异常现象发生. 用最小二乘法将实验摩尔热容对温度进行拟合, 得到热容随温度变化的多项式方程. 用此方程进行数值积分, 得到在此温度区间每隔5 K的舒平热容值和相对于298.15 K时的热力学函数值. 在此基础上, 通过设计合理的热化学循环, 选用1 mol/L NaOH溶液作为量热溶剂, 利用等温环境溶解-反应热量计分别测得固相反应的反应物和产物在所选溶剂中的溶解焓, 得到固相反应的反应焓. 最后, 计算出无水烟酸钠的标准摩尔生成焓为: ΔfHm0[Na(C6H4NO2), s]=-(548.96±1.11) kJ/mol.  相似文献   

6.
We have discovered that pentamethylcyclopentasiloxane (D5H) can be readily polymerized into poly(pentmethylcyclopentasiloxane) (PD5) with a Pt (Karstedt) catalyst in the presence of water in bulk or in solution at 100 °C and that the product is a solid with extraordinary properties. The polymerization starts with the oxidation of the SiH groups by water into an intermediate containing SiOH groups (SiH + H2O → SiOH + H2), which is followed immediately by the condensation (2SiO → Si? O? Si) of D5H rings into complex aggregates of cyclosiloxane moieties. According to Raman spectroscopy, an average of three of the five SiH functionalities are converted, and the final product contains only a negligible number of SiOH groups. The melting and glass‐transition temperatures of the monomer are exceptionally low: Tm,D5H = ?137.6 ± 1 and Tg,D5H = ?152 ± 2 °C. The polymer exhibits an unprecedented combination of properties: it is a stiff and brittle solid, is insoluble in common solvents, does not exhibit a melting endotherm but has an extremely low glass transition (Tg,PD5 = ?151 ± 0.5 °C), and is thermally stable up to at least 700 °C. Brillouin scattering indicates very slow variation of the relaxation time with temperature, a property characteristic of strong glass‐forming systems such as silica glass. This characteristic may account for the unique combination of properties of the new polymer: an extremely low glass‐transition temperature combined with solidlike properties even at ambient temperature (more than twice its glass‐transition temperature). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1285–1292, 2002  相似文献   

7.
It is shown experimentally that pentafluoroethane undergoes rapid protium-deuterium exchange with water in the presence of hydroxide ion. Addition of dimethylsulfoxide enhances the rate at least by a factor of 100. The first measured fractionation factor data are presented for the temperature range of 50–120°C. These values are compared with the theoretical estimations calculated by using isotopic reduced partition function ratios based on molecular vibrational frequencies. Although catalytic exchange is slow at ambient temperature, the reaction rate becomes measureable above around 60°C because of large activation energy (92 kJ/mole). Comparisons are made with similar data available for various halomethane and haloethane systems. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
Methane is a primary product of pyrolysis of 3-chloro-l-butene at temperatures in the range 776–835°K, and from its rate of formation values have been obtained for the limiting high-pressure rate constant of the reaction These may be represented by the expression log [(k1)/sec?1] = (16.7 ± 0.3) ? (71.5 ± 1.5)/θ, where θ = 2.303RT kcal/mole. Assuming a zero activation energy for the reverse reaction and that over the experimental temperature range the rates at which a methyl radical adds on to chlorobutene are comparable to those at which it abstracts hydrogen, the activation energy for the dissociation reaction leads to a value of 83.2 ± 1.9 ckal/mole for D(H? CHClCH:CH2) at 298°K. Taking D(H? CHClCH2CH 3) = 95.2 ± 1.0 kcal/mole a value of 12.0 ± 2.1 kcal/mole is obtained for the resonance energy of the chloroallyl radical. This value in conjunction with resonance energies obtained in earlier work indicates that substitution of a hydrogen atom on the carbon atom adjacent to the double bond in the allyl radical leads to no significant variation in the allylic resonance energy.  相似文献   

9.
Conditional stability constants, enthalpies and entropies of complexation at pH 7.5 and ionic strength 0.1 have been determined for neptunium(V) complexes of phosphate, salicylate, phthalate and citrate. Phosphate forms a complex with log β = 2.36 ± 0.42 at 25°C, ΔH°c = ? 69.9 kJ/mole and ΔS°c = ? 188 J/mole-K. At pH 7.5 salicylate does not form a complex with neptunium(V) due to the low charge density of the NpO2+ ion and incomplete ionization of the salicylate ion. Phthalate forms a complex with log β = 3.43 ± 0.33 at 25°C, ΔH°c = 33.5 kJ/mole and ΔS°c = 182 J/mole-K. Citrate forms a complex with log β = 4.84 ± 0.72 at 25°C, ΔH°c = 14.0 kJ/mole and ΔS°c = 140 J/mole-K. In all cases, only 1:1 complexes were identified.  相似文献   

10.
The I2-catalyzed isomerization of allyl chloride to cis- and trans- l-chloro-l-propene was measured in a static system in the temperature range 225–329°C. Propylene was found as a side product, mainly at the lower temperatures. The rate constant for an abstraction of a hydrogen atom from allyl chloride by an iodine atom was found to obey the equation log [k,/M?1 sec?1] = (10.5 ± 0.2) ?; (18.3 ± 10.4)/θ, where θ is 2.303RT in kcal/mole. Using this activation energy together with 1 ± 1 kcal/mole for the activation energy for the reaction of HI with alkyl radicals gives DH0 (CH2CHCHCl? H) = 88.6 ± 1.1 kcal/mole, and 7.4 ± 1.5 kcal/mole as the stabilization energy (SE) of the chloroallyl radical. Using the results of Abell and Adolf on allyl fluoride and allyl bromide, we conclude DH0 (CH2CHCHF? H) = 88.6 ± 1.1 and DH0 (CH2CHCHBr? H) = 89.4 ± 1.1 kcal/ mole; the SE of the corresponding radicals are 7.4 ± 2.2 and 7.8 ± 1.5 kcal/mole. The bond dissociation energies of the C? H bonds in the allyl halides are similar to that of propene, while the SE values are about 2 kcal/mole less than in the allyl radical, resulting perhaps more from the stabilization of alkyl radicals by α-halogen atoms than from differences in the unsaturated systems.  相似文献   

11.
4-Methyl-2,6-di-tert-butylphenol strongly retards the free radical polymerization of vinyl acetate initiated by azobisisobutyronitrile. The chain transfer constant, estimated from rate data, is 0.020 ± 0.004 at 35°C and does not vary significantly with temperature. Molecular weight data lead to transfer constants of 0.023, 0.020, and 0.024 at 35, 45, and 55°C, respectively. A mean kinetic isotope effect of 9.8 ± 1.0 is observed for the phenol deuterated at the OH group, showing that the main attack of poly(vinyl acetate) radicals on the phenol involves hydrogen abstraction from this group. The activation energy for hydrogen abstraction is estimated to be 7.8 kcal/mole, and the rate constant at 50°C is 160 ± 40 1./mole-sec. The stationary concentration of 4-methyl-2,6-di-tert-butylphenoxyl in the polymerization mixture is proportional to the phenol concentration and is independent of the initiator concentration, as shown by electron spin resonance studies. Cross termination of poly(vinyl acetate) and phenoxy radicals occurs to a greater extent than mutual termination of these radicals. The rate constant for cross termination is close to 1 × 108 1./mole-sec at 50°C; the activation energy for cross termination is 2.9 ± 1.3 kcal/mole.  相似文献   

12.
The saturation vapour pressures of WOBr4 and WO2Br2 and their reaction equilibria have been determined by means of a membrane zero manometer and ampoule quenching experiments, respectively. From the pressuretemperature dependence the following sublimation data were estimated: Δ H° (subl., WOBr4, 298) = 29.4 (± 1.0) kcal/mole; Δ H° (subl., WO2Br2, 298) = 36.6 (±1.5) kcal/mole; Δ S° (subl., WOBr4, 298) = 50.1 (± 1) cl; Δ S° (subl. WO2Br2, 298) = 53.0 (±1.5) cl. For the decomposition reaction of solid WO2Br2 were obtained: Δ H° (s, 690) 37.5 (± 0.7) kcal/mole, Δ S° (s, 690) = 49.0 (± 0.5) cl; and for the decomposition of gaseous WO2Br2: Δ H° (g, 690) = ?29.6 (± 2.0) kcal/mole, Δ S°. (g, 690) = ?44.5 (± 1.5) cl.  相似文献   

13.
The mechanical and dielectric low temperature absorptions of poly(vinyl chloride) (PVC) and several modified PVC's have been studied over the temperature range from ?60 to +60°C. with some tests extending to ?150°C. and others to +170°C. The results indicate that the low-temperature absorption near ?50°C (β2 absorption) decreases in intensity with chlorination, while the absorption at a higher temperature near 0°C (β1 absorption) decreases in intensity with hydrogenation. The apparent activation energies of the β1 and β2 absorptions were calculated to be 16 kcal/mole and 10.7 kcal/mole, respectively. Besides, the β2 absorption markedly decreases in intensity with addition of plasticizer, while the intensity of β1 absorption is not much affected by increasing plasticizer content. From these results, the β1 and β2 processes are concluded to be the results of molecular motion in crystalline and amorphous region in PVC, respectively. For samples of reduced Cl content, another low-temperature absorption was located near ?120°C (γ absorption) and attributed to the presence of short sequences of ethylene units. It has also been observed that the temperature location of the high temperature absorption near 100°C (α absorption) shifts linearly to higher temperature with increasing chlorine content and to lower temperature with increasing hydrogen content.  相似文献   

14.
Aminolysis of a random copolymer of styrene and n-butyl methacrylate (2.54:1.00 mole ratio) with 6-aminohexanol has been studied. Kinetics were determined by covalently dyeing the functional polymer and spectrally measuring dye content. In the presence of 1,4-diaza[2,2,2]bicyclooctane (DABCO), an activation energy of 22.2 ± 1.0 kcal/mole was calculated from the temperature dependence of the overall rate of reaction. The rate is independent of solvent polarity. The rate at 189°C is 2.1-fold slower than that of poly(n-butyl methacrylate). The phenyl group of the styryl moiety inhibits the reaction, apparently via a steric effect. This aminolysis technique affords noncrosslinked (similar M?n and M?w) functional polymers. By a similar process an aminediol and an alcohol which contained a secondary and a primary amino group also yielded noncrosslinked functionalized polymers.  相似文献   

15.
The reaction between bis(2,2,2-trifluoroethyl) phenylphosphonite and trimethylsilyl azide at temperatures from 70 to 120°C provides a mixture of bis(2,2,2-trifluoroethoxy)phenylN-(trimethylsilyl) phosphoranimine and poly(phenyl-2,2,2-trifluoroethoxyphosphazene). The polymer is probably formed by phosphine azide intermediates because the phosphor-animine is thermally stable up to 200°C. The polyphosphazene is an amorphous stereo-random polymer with a glass transition temperature at ?31°C.  相似文献   

16.
Dially(4-fluorophenyl)phosphine and allyl(t-butylamino)phenylphosphine were pyrolyzed in a stirred-flow reactor at 340–420°C/9–19 Torr, using toluene as carrier gas. The primary reaction products were propene, 1-(4-fluorophenyl)-1-phosphabutadiene, and 1-phenyl-2-t-butyliminophosphine. The phosphorus-containing products gave rise to [4 + 2] and [2 + 2] cycloaddition products, respectively. The consumption of these phosphines showed first-order kinetics, with the rate coefficients following the Arrhenius equations: Dially(4-fluorophenyl)phosphine: k(s−1) = 109.00±0.32 exp (- 122 ± 4 kJ/mol RT) Allyl(t-butylamino)phenylphosphine: k(s−1) = 109.04±0.25 exp (-113 ± 3 kJ/mol RT) The results support a six-center cyclic transition-state unimolecular elimination reaction mechanism for both reactants. © 1997 John Wiley & Sons, Inc.  相似文献   

17.
This paper is concerned with the study of isotope exchange reaction between Sn(II) and Sn(IV) in hydrochloric acid solutions. The kinetics of the exchange reaction of tin in these solutions were studied by extraction of Sn(IV)-hydroxyquinolate into chloroform.113Sn tracer, initially in the Sn(IV) state, was used. The rate of exchange reaction was determined at 22°C in a wide range of hydrochloric acid concentrations (2.8–12M). The dependence of the exchange rate on the concentration of chloride and hydrogen ions in these solutions (ionic strength: I∼8 and I∼12) are given. The activation energy dependence on chloride ion concentration at I∼12 was determined. The possible mechanism of the exchange reaction between tin(II) and tin(IV) is discussed on the basis of these data.  相似文献   

18.
The rate of the gas phase reaction has been measured spectrophotometrically over the range 480°–550°K. The rate constant fits the equation where θ = 2.303RT in kcal/mole. This result, together with the assumption that the activation energy for the back reaction is 0 ± 1 kcal/mole, allows calculation of DH (Δ? CH2? H) = 97.4 ± 1.6 kcal/mole and ΔH (Δ? CH2·) = 51.1 ± 1.6 kcal/mole. These values correspond to a stabilization energy of 0.4 ± 1.6 kcal/mole in the cyclopropylcarbinyl radical.  相似文献   

19.
Oxygen surface exchange kinetics and diffusion were studied in Pr2NiO4?+?δ (PNO) by the isotope exchange method with gas phase equilibration in the temperature range of 600–800 °C and oxygen pressure range of 0.33–1.62 kPa. The oxygen heterogeneous exchange rate (rH), oxygen diffusion coefficient (D), rates of oxygen dissociative adsorption (ra), and oxygen incorporation (ri) were calculated along with the apparent activation energies of oxygen surface exchange and diffusion processes. The temperature dependence of rH was found to benon-linear in Arrhenius coordinates. The apparent activation energy changed from 1.4?±?0.2 eV at T?>?700 °C to 2.0?±?0.1 eV. This might be attributed to the change in the rate-determining stage of oxygen exchange for Pr2NiO4?+?δ at T ~?700 °C, because of a shift in the ratio between ra and ri caused by the difference in their activation energies. Possible reasons for the observed changes in the rate-determining stage are discussed.  相似文献   

20.
Direct arylation of the ortho‐C? H bond of an aryl pyridine or an aryl imine with an aryl Grignard reagent has been achieved by using an iron‐diamine catalyst and a dichloroalkane as an oxidant in a short reaction time (e.g., 5 min) under mild conditions (0 °C). The use of an aromatic co‐solvent, such as chlorobenzene and benzene, and slow addition of the Grignard reagent are essential for the high efficiency of the reaction. The present arylation reaction has distinct merits over the previously developed reaction that used an arylzinc reagent, such as its reaction rate and atom economy. Selective C? H bond activation occurs in the presence of a leaving group, such as a tosyloxy, chloro, and bromo group. Studies on a stoichiometric reaction and kinetic isotope effects shed light on the reaction intermediate and the C? H bond‐activation step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号