共查询到20条相似文献,搜索用时 15 毫秒
1.
The Crystal Structure of VO2IO3·2 H2O VO2IO3 possesses a layer structure and crystallizes in the space group P21/c with a = 9.848(3) Å, b = 8.l58(2) Å, c = 7.192(2) Å, β = 102.17(2)° and four formula units in the unit cell. The individual layers of the structure consist of highly distorted corner- and edgesharing IO6, and VO6, octahedra. Only one oxygen atom is bound terminally at the vanadium, as is shown by the vibrational spectrum, too. 相似文献
2.
Crystal Structure of Sodium Dihydrogencyamelurate Tetrahydrate Na[H2(C6N7)O3] · 4 H2O Sodium dihydrogencyamelurate‐tetrahydrate Na[H2(C6N7)O3]·4 H2O was obtained by neutralisation of an aqueous solution, previously prepared by hydrolysis of the polymer melon with sodium hydroxide. The crystal structure was solved by single‐crystal X‐ray diffraction ( a = 6.6345(13), b = 8.7107(17), c = 11.632(2) Å, α = 68.96(3), β = 87.57(3), γ = 68.24(3)°, V = 579.5(2) Å3, Z = 2, R1 = 0.0535, 2095 observed reflections, 230 parameters). Both hydrogen atoms of the dihydrogencyamelurate anion are directly bound to nitrogen atoms of the cyameluric nucleus, thus proving the preference of the keto‐tautomere in salts of cyameluric acid in the solid‐state. The compound forms a layer‐like structure with an extensive hydrogen bonding network. 相似文献
3.
Crystal Structure of MgHg(SCN)4 · 2 H2O The crystal structure of the monoclinic MgHg(SCN)4 · 2 H2O (a ? 1 335.1(6) pm, b ? 531.6(5) pm, c ? 1 867.0(14) pm, β ? 92.3(1)°, Z ? 4, space group C2/c) contains nearly tetrahedral Hg(SCN)4 and octahedral Mg(OH2)2(NCS)4 groups. These groups are joined together with Hg? SCN? Mg bridges and are forming a network of layers. 相似文献
4.
On the Existence of the Tetrahydrogenorthoperiodate Ion. The Crystal Structure of LiH4IO6 · H2O The crystal structure of LiH4IO6 · H2O has been determined (P1 ; a = 564.74(12), b = 574.41(13), c = 970.4(6) pm, α = 101.37(2), β = 96.37(2), γ = 114.72(2)°; Z = 2; 5 731 independent reflections; R = 0.038). All hydrogen-atoms were localized from difference fourier map and refined without applying constraints. Thus the existence of the tetrahydrogenorthoperiodate-ion in the solid state is proved, unambigously. The crystal structure is discussed and compared to other alkaliorthoperiodates. 相似文献
5.
Crystal Structure of Na5P3O10 · 6 H2O Na5P3O10 · 6 H2O crystallizes triclinic in P1 with a = 1 037.0(2), b = 984.8(4), c = 761.5(3) pm; α = 92.24(7)°, β = 94.55(9), γ = 90.87(6)°; Z = 2. The structure has been determined from fourcycle diffractometer data (2 089 independent reflections, R = 0.053). All hydrogen positions have been taken from a weighted difference-fourier-syntheses. Na5P3O10 · 6 H2O forms colorless, plate-like crystals, which are twinned systematically parallel (001) and can be divided mechanically into single-crystalline portions. 相似文献
6.
Crystal Structure of Zn(N3)2 · 2.5 H2O The crystal structure of zinc azide 2.5 hydrate, 1975 erroneously described as a trihydrate, was determined by single crystal x-ray diffraction. The crystals are monoclinic, a = 996.2(5), b = 594.8(5), c = 1018.4(9) pm, β 90.16(3)°, space group P2/n, Z = 4, R = 0.043. Zinc is hexacoordinated by four azide groups and two water molecules. The octahedra around zinc share nitrogen atoms as common edges and they are connected to form strings along the b-axis. The water molecules are arranged to chainlike clusters, two of the ten water molecules are not coordinated to zinc. The azide groups are asymmetric and almost linear. 相似文献
7.
The Crystal Structure of Nitrogen Triiodide-1-Pyridine NI3 · C5H5N The crystal structure of NI3 · C5H5N like “Nitrogen Triiodide” NI3 · NH3 contains NI4 tetrahedra as essential structure elements. The tetrahedra are connected by common corners, forming indefinite chains. The pyridine molecule is bonded by its lone electron pair to one of the two iodine atoms that do not participate in the connection of the tetrahedra. Different from NI3 · NH3 there are very weak intermolecular interactions between iodine atoms of neighbouring chains. 相似文献
8.
Preparation and Crystal Structure of CrSO4 · 3 H2O Evaporating a solution of Cr2+ in dilute sulphuric acid at 70°C light blue crystals of CrSO4 · 3 H2O were grown. Its x-ray powder diffraction pattern is quite similar to that of CuSO4 · 3 H2O. The crystal structure refinement of CrSO4 · 3 H2O (space group Ce, a = 5.7056(8) Å, b = 13.211(2) Å, c = 7.485(1) Å, β = 96.73(1)°, Z = 4) from single crystal data, using the parameters of the copper compound as starting values, results in a final R-value of R = 3.8%. The surrounding of the Cr2+ ion can be described as a strongly elongated octahedron. The basal plane of the CrO6-octahedron consists of three hydrate oxygen atoms and one sulphate oxygen atom. The two more distant axial oxygen atoms also belong to sulphate groups. Thus they are forming chains of alterning CrO6-octahedra and SO4-tetrahedra along [110] and [1–10] linked via common corners. These chains are connected via sulphate groups and by bridging hydrogen bonds to a 3-dimensional network. 相似文献
9.
H. Hartung 《无机化学与普通化学杂志》1970,372(2):150-161
The crystal structure of CuBr · (C2H5)4P2 has been determined by single crystal X-ray methods. The crystals are triclinic (space group P 1 ) with two formula units per unit cell (a) = 9,29, b = 9,92, c = 7,57 Å, α = 85,3°, β = 106,6°, γ = 109,1°. The copper atoms are tetrahedrally coordinated by two bromine and two phosphorus atoms (of different biphosphine molecules). The structure has continuous chains running parallel c, in which the copper atoms are linked together by alternating double bridges consisting of two biphosphine molecules and two bromine atoms, respectively. 相似文献
10.
Crystal Structure of SrHg(SCN)4 · 3 H2O SrHg(SCN)4 · 3 H2O is orthorhombic, space group Pcca, with a = 19.476(7), b = 8.150(1), c = 8.991(3) Å, V = 1427.1 Å3, Z = 4, dc = 2.67 g · cm?3, μ(AgKα) = 77.95 cm?1. The salt consists of nearly tetrahedral Hg(SCN)4 groups, Sr has a tricapped trigonal prismatic coordination: four N and five O atoms. The thiocyanate groups form end-to-end bridges and connect the Hg and Sr coordination polyhedra. 相似文献
11.
Synthesis and Crystal Structure Determination of Pb2P4O12 · 3 H2O Pb2P4O12 · 3 H2O precipitates at mixing aqueous solutions of Pb(NO3)2 and Na4P4O12 (25°C). Crystal growth was achieved by applying gel-techniques (Agar-Agar-gel). The crystal structure (P1 , a = 786.4(3), b = 914.4(3), c = 1021.6(3) pm, α = 97.42(2)°, β = 100.63(2)°, γ = 114.92(2)°; Z = 2; 4160 unique diffractometer data, R = 0.05) contains cyclo-tetraphosphate anions with point symmetry D2d. Lead is coordinated by eight oxygen, the polyhedra deriving from a square antiprism. 相似文献
12.
Crystal Structure of the Magnesium Octachlorotrimercurate(II)-hexahydrate MgHg3Cl8 · 6 H2O Colourless crystals of MgHg3Cl8 · 6 H2O were obtained by crystallization from aqueous solutions of MgCl2 and HgCl2. There were no indications of the existence of the reported compounds MgHgCl4 · 6 H2O and MgHg2Cl6 · 6 H2O. The crystal structure of the triclinic MgHg3Cl8 · 6 H2O consists of linear pseudo HgCl2 molecules, binuclear Hg2Cl6 anions and octahedral Mg(OH2)6 kations. 相似文献
13.
Crystal Structure of SrZn(OH)4 · H2O Colorless crystals of SrZn(OH)4 · H2O are obtained by electrochemical oxidation of Zn in a zinc/iron pair in an aqueous ammonia solution saturated with strontium hydroxide. The X-ray crystal structure determination was now successful including all hydrogen positions: P1 , Z = 2, a = 6.244(1) Å, b = 6.3000(8) Å, c = 7.701(1) Å, α = 90.59(1)°, β = 112.56(2)°, γ = 108.66(2)°, N(F ≥ 3σF) = 1967, N(Var.) = 84, R/Rw = 0.020/0.024. In SrZn(OH)4 · H2O Zn2+ is tetrahedrally coordinated by four OH? -ions while Sr2+ has 6 OH? and one H2O as neighbours. The polyhedra around Sr2+ are connected to chains which are linked three-dimensionally by isolated tetrahedra [Zn(OH)4]. Hydrogen bonds between H2O as donor and OH? are characterized by raman spectroscopy. 相似文献
14.
Concerning Polymetaarsenites. Preparation and Crystal Structure of BaAs2O4. H2O BaAs2O4·H2O was prepared by hydrothermal reaction of BaO with As2O3 at a temperatur of 200°C. An X-ray structural analysis demonstrated that the phase contains polymetaarsenite anions [As4O84?]n, which adopt vierer single chains in the lattice. The relationship between the conformation of metaarsenite chains and cation size is discussed. 相似文献
15.
Crystal and Molecular Structure, of S4N4 · 2C7H8 The structure of the title compound has been determined from threedimensional X-ray data. Crystals are monoclinic, with unit cell dimenions a = 16.532 Å, b = 8.563 Å, c = 10.880 Å, β = 103.2°, space group C? C2/c and Z = 4. Least squares refinement, by use of 1132 independent reflections measured on a diffractometer has reached 3.9%. In the S4N4·2C7H8 molecules the organic components are linked to two sulfur atoms of the S4N4, ring each. 相似文献
16.
Crystal Structure of CaZn2(OH)6 · 2 H2O The electrochemical oxidation of zinc in a zinc/iron-pair leads in an aqueous NH3 solution of calciumhydroxide at room temperature to colourless crystals of CaZn2(OH)6 · 2 H2O. The X-ray structure determination was now successful including all hydrogen positions. P21/c, Z = 2, a = 6.372(1) Å, b = 10.940(2) Å, c = 5.749(2) Å, β = 101.94(2)° N(F ≥ 3σF) = 809, N(Var.) = 69, R/RW = 0.011/0.012 The compound CaZn2(OH)6 · 2H2O contains Zn2+ in tetrahedral coordination by OH? and Ca2+ in octahedral coordination by four OH? and two H2O. The tetrahedra around Zn2+ form corner sharing chains, three-dimensionally linked by isolated polyhedra around Ca2+. Weak hydrogen bridge bonds result between H2O as donor and OH?. 相似文献
17.
Diammonium tricyanomelaminate dihydrate [NH4]2[C6N9H] · 2 H2O ( 1 ) and dimelaminium tricyanomelaminate melamine dihydrate [C3N6H7]2[C6N9H] · C3N6H6 · 2 H2O ( 2 ) were obtained by metathesis reactions from Na3[C6N9] in aqueous solution and characterized by single‐crystal X‐ray diffraction and 15N solid‐state NMR spectroscopy ( 1 ). Both salts contain mono‐protonated tricyanomelaminate (TCM) anions and crystallize as dihydrates. Considering charge balance requirements, the crystal structure of 1 (C2/c, a = 3181.8(6) pm, b = 360.01(7) pm, c = 2190.4(4) pm, β = 112.39(3)°, V = 2319.9(8) 106 · pm3) can best be described by assuming a random distribution of an ammonium ion – crystal water pair over two energetically similar sites. Apart from two melaminium cations, 2 (P21/c, a = 674.7(5) pm, b = 1123.6(5) pm, c = 3400.2(5) pm, β = 95.398(5), V = 2566(2) 106 · pm3) contains one neutral melamine per formula unit acting as an additional “solvent” molecule and yielding a donor‐acceptor type of π–stacking interaction. 相似文献
18.
E. Herdtweck 《无机化学与普通化学杂志》1983,501(6):131-136
Crystal Structure of the Mixed-Valence Iron Fluorid Hydrate Fe3F8 · 2 H2O Newly prepared was the red, monoclinic compound Fe3F8 · 2 H2O, single crystals of which could be obtained under hydrothermal high pressure conditions (space group C2/m with a = 761.2(3), b = 750.0(1), c = 746.9(3) pm, β = 118.38(2)° and Z = 2). The X-ray structure determination (RG = 0.0192 and 635 reflexions) yielded a framework structure, in which layers of octahedra 2[FeIIIF6/2] are connected via corners of [FeIIF4/2(H2O)2]-octahedra. The average distances in the nearly ideal octahedra are FeIII? F = 193.0, FeII? F = 208.1 and FeII? OH2 = 211.5 pm. 相似文献
19.
H. Worzala 《无机化学与普通化学杂志》1976,421(2):122-128
Crystal Structure of Lead Cyclotetraphosphate-4-Hydrate, Pb2P4O12·4 H2O Pb2P4O12·4 H2O is the starting product of a series of solid state reactions with the final product cyclooctaphosphate. Pb2P4O12·4 H2O crystallizes in the monoclinic space group P21/n, with a = 8.07 ± 0.02, b = 11.76 ± 0.03, c = 7.50 ± 0.02 Å and β = 108.2 ± 0.3°. The crystal structure has been solved by Patterson and Fourier methods and refined by least squares calculations to an R-index of 0.07. The structure consists of P40124? ringanions, which are connected by Pb and hydrogen bonds. Lead is coordinated by eight oxygen atoms. 相似文献
20.
Tricobalt (II)-dihydroxidesulfate-dihydrate, Co3(OH)2(SO4)2 · 2H2O, is orthorhombic: a = 7.21, b = 9.77, c = 12.86 Å, V = 905.9 Å3, space group D-Pbcm with four formula units per cell. The atomic positions have been determined by threedimensional Patterson and Fourier synthesis and full-matrix least-squares refinement of single crystal X-ray diffraction data. The structure shows infinite chains [001] of Co? O octahedra sharing one edge with each other. These chains are linked together by alternating SO4 tetrahedra and additional Co? O octahedra, thus giving rise to a three-dimensional network of polyhedra. There is no similarity to the well known layer structures of most hydroxide salts of divalent metals. The SO4 tetrahedra are regular while the Co? O octahedra show considerable distortion. The water molecule is coordinated to one Co atom and bonded to sulfate oxygen by two weak hydrogen bridges. 相似文献