首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic modification of clays with surfactants is required for the preparation of polymer-clay nanocomposites for a variety of applications. We have studied the structure and dynamics of interfaces in synthetic clays modified with phosphonium surfactants. The chemical shifts, line widths, and relaxation times measured by 31P, 13C, and 1H NMR and the relaxation times measured by impedance spectroscopy allow us to monitor the dynamics over a wide range of time scales. The results show that the phosphonium headgroup is most restricted and that the mobility increases with increasing separation from the clay surface. The carbon chemical shifts show that the 16-carbon and 12-carbon surfactant tails of hexadecyltributyl phosphonium and dodecytriphenyl phosphonium are disordered at the interface and experience mobility over a range of time scales. The dynamics depend most strongly on the structure of the surfactant headgroup, and tributylphosphoniums are more mobile than the triphenylphosphoniums. Two dimensional chemical shift anisotropy spin exchange experiments show that the phosphorus atoms in the triphenylphosphonium surfactant are immobile on the clay surface on a 1 s time scale. The dynamics measured by impedance spectroscopy show a similar dependence on headgroup structure, even though the processes occur on very different time scales and length scales. The relationship between the structure and dynamics of the interface and the properties of composites are considered.  相似文献   

2.
A method for formation of polymer-clay nanocomposites involves dispersion of the nanometer silicate layers of clays into a solvent, followed by dispersion into polymers. The dispersion of layered silicates within solvents affects the structure and properties of the nanocomposites. We report the dispersion of organically modified clays, used for formation of nanocomposites with organic polymers, within a range of alcohol solvents. Experiments involved stirring a mixture containing approximately 1 wt% of alkylammonium-modified clays in n-alcohols with general molecular structure RnOH, where n represents the number of carbons of alkyl chains, varying from 2 to 8. The clays precipitated from the dispersion when RnOH solvents with n<5 were used, however, they formed gels for solvents with n5. The increased dispersion was related to the decrease of polarity and hydrogen bonding force within solvents. X-ray diffraction for the dispersed clays indicated that the interlayer spaces (1.8 nm), formed by regular stacking of the silicate layers, expanded to a maximum of 3.0 nm after treatment with RnOH with n5. The interlayer expansion was due to the intercalation of n-alcohol molecules within the interlayer spaces. It is suggested that the alkyl chains of n-alcohols remain parallel to the silicate surface in the intercalate. Preliminary experiments on the influence of these alcohol solvents on the intercalation of polyol (polyether) are also reported.  相似文献   

3.
Coupling of long‐chain ionic liquid (LCIL)‐based sweeping and micelle to solvent stacking (MSS) in CZE for anionic compounds was proposed. N‐Cetyl‐N‐methylpyrrolidinium bromide (C16MPYBr) was used as a novel cationic surfactant. The capillary column was conditioned with poly(1‐vinyl‐3‐butylimidazolium) bromide, a kind of polymeric ionic liquid, to obtain the anodic electroosmotic flow (EOF). There is a micellar solution (MS) zone which is prepared with C16MPYBr before the sample zone. The micelles penetrated into the sample zone, swept and transported the analytes toward the micelle to solvent boundary (MSSB). Meanwhile, a sufficient amount of methanol in the background solution (BGS) resulted in the reversal of effective electrophoretic mobility of analytes and completed the MSS. Under optimal conditions, good linearity (0.9988–0.9999) was obtained for model analytes in a wide linear range with limits of detection (LODs) from 0.025 to 0.25 mg/L. The intraday and interday repeatabilities (%RSD, n=5, 10) were acceptable in the range from 2.12 to 7.29%. 34 and 25 times increases in peak area sensitivity for benzoic acid (BA) and 2‐nitrophenol (2‐NP) and 60 times increase in peak height sensitivity for 4‐chlorophenol (4‐CP) were obtained. The proposed method is applied to analyze two spiked environmental water samples obtaining satisfactory recoveries.  相似文献   

4.
A generalized model for scattering from a collection of independent (isolated) stacks of layers enabled predictions of and parameterized fits to small-angle X-ray scattering from layered silicate dispersions. From this fundamental development, example investigations that use small-angle scattering to examine the structure of organically modified montmorillonite dispersions in toluene and toluene–acetone blends provided detailed information on the distribution of the stacks (relative concentrations, K and fraction of individual layers, χ) and characteristics of the intercalated crystallite (mean number of layers per stack, 〈N〉; layer repeat distance, D; and fractional stack disorder, δ). The analysis initially supported correlations with discotic phase behavior, which provides concise definitions for various morphologies (exfoliated, intercalated, and mixed). Finally, examination of the deviations between the scattering model and the experiment provided insights for improved experimental technique, more complete utilization of the scattering data, a sound basis for real-time observations, insight into inconsistencies between scattering and microscopy, and minimization of incorrect or overinterpretation of data. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3214–3236, 2003  相似文献   

5.
在微波作用下用十六烷基溴化吡啶(CPB)、十六烷基三甲基溴化铵(CTMAB)和盐酸萘乙二胺(NETH)对天然膨润土进行改性,制得了CPB-膨润土(CPB-Bt)、CTMAB-膨润土(CTMAB-Bt)和NETH-膨润土(NETH-Bt),并比较了它们对水中钙黄绿素的吸附性能.结果表明,在钙黄绿素浓度25 mg·L-1、...  相似文献   

6.
Organically modified, ordered mesoporous silica films, which can provide hydrophobicity and low polarizability to the framework, were prepared using Brij-76 block copolymer as a template. Due to a fast condensation reaction of the silica precursor, mesostructured silica films were not properly synthesized. To circumvent this problem, a synthesis procedure was modified to provide an enhancement of pore periodicity through the incorporation of methyl ligands on the framework. The micropore volume was reduced, and the pore size was enlarged, as the concentration of the methyl ligands on the framework was increased. A mesophase transition from a two-dimensional hexagonal structure to a body-centered cubic (BCC) structure was observed according to the concentration of incorporated methyl ligands. The mechanical properties of the fabricated films were investigated according to the pore ordering and film density. The mechanical properties of the films with random pore geometry show a positive correlation between film density and elastic modulus. Meanwhile, the mechanical behavior of organically modified mesoporous silica films with periodic pore distribution represents a negative correlation within a certain density range, which is advantageous to the low-k materials. Especially, film with a low micropore volume fraction and BCC pore ordering is more applicable to a low-k material due to low dielectric constant and high mechanical strength.  相似文献   

7.
以商品壳聚糖(CTS)为原料,通过对-NH_2的化学改性,合成制备了壳聚糖改性的水溶性两性离子表面活性剂.采用正交试验法对合成反应工艺作了优化;通过红外光谱(IR)、核磁共振(H-NMR)及元素分析(EA)等方法对烷基壳聚糖中间体(RCTS)与最终产物,即烷基壳聚糖磺酸季铵盐(SRCTS)的分子结构进行了表征,并对SRCTS的水溶性、表面张力以及泡沫性能作了初步的探索.结果表明:经改性的SRCTS具有良好的表面活性与泡沫稳定性,其最低表面张力值可降至29.1mN/m;泡沫半衰期可提高65%.  相似文献   

8.
Organically modified aerogels were prepared by NH4OH-catalyzed hydrolysis and condensation of RSi(OMe)3 (R = Me, Pr n , Ph, Bu i )/Si(OMe)4 or (MeO)3Si-Y-Si(OMe)3/Si(OMe)4 (Y = C2H4, p-C6H4, C6H12) mixtures, followed by supercritical drying of the alcogels with methanol. Starting from 1:4 mixtures of RSi(OMe)3 and Si(OMe)4, hydrophobic aerogels with nearly no residual Si-OH or Si-OMe groups were obtained. These aerogels were therefore insensitive towards moisture. Their elastic constant was distinctly lower than that of unmodified silica aerogels. Aerogels similarly prepared from 1:8 mixtures of (MeO)3Si-Y-Si(OMe)3 and Si(OMe)4 had a rather high concentration of residual Si-OMe groups, and therefore they were hydrophilic. Their elasticity was about the same as that of unmodified silica aerogels. The difference between the two types of aerogels suggests different microstructures, depending on the nature of the organic groups.  相似文献   

9.
This work focuses on the optimization of the rheological behavior of suspensions considering different solvent compositions. The effects of methyl ethyl ketone (MEK)/ethanol (E) solvent mixtures on reaction sialon suspensions were investigated by measuring sedimentation behavior, adsorption of dispersant, and flow behavior. It was shown that both the flow behavior and the sedimentation behavior strongly depended on selection of solvent composition. Using 3 wt% KD1 as dispersant, well-dispersed colloidal suspensions could be obtained in MEK-rich solvents. The suspensions with 60 vol% MEK/40 vol% E as solvent could be fitted to the Bingham model with very low yield stress, while suspensions with pure MEK or ethanol-rich mixtures as solvent showed pseudo plastic behavior with relatively high yield stress values. A model was proposed to explain the different flow behaviors of suspensions considering the different configurations of dispersant at particles' surfaces.  相似文献   

10.
Sol—gel films prepared from organosilanes containing acidic/basic sites have been investigated as permselective and ion-exchange coatings for electroanalytical and bioanalytical investigations. When a glassy carbon electrode was modified with a sol—gel film fabricated from 3-aminopropyl-methyl-diethoxysilane (silane—NH2), excellent permselectivity and anion-exchange properties were obtained. For a pH 7.4, 1 mM potassium ferricyanide solution, an eight-fold increase in current was observed after the electrode was immersed in solution for 10min whereas complete suppression of the electrochemical response for ruthenium hexaamine and methyl viologen was observed. Sol—gel films fabricated from trimethoxysilylpropyl ethylenediamine triacetic acid (silane—(COOH)3) exhibited nearly complementary behavior. An approximately 10-fold increase in current was observed for pH 7.4, 1 mM ruthenium hexaammine solutions and complete suppression of the potassium ferricyanide response was observed. These ion-exchange properties can be attributed to the strong electrostatic interactions between the acid/basic functional group in the matrix and the highly charged analyte molecules. When glassy carbon electrodes were modified with diethyl-(triethoxysilypropyl) malonate (silane—(COOEt)2), the films did not exhibit distinct ion-exchange properties but rather suppressed the reduction of potassium ferricyanide. The observed permselectivity results from the electron dense carbonyl group and/or hydrolyzed ester functionalities in the film.  相似文献   

11.
Binary mixtures comprising cetylpyridinium chloride and non-aqueous solvents of varying polarity [ethylene glycol (ε ~ 37.2) and formamide (ε ~ 109)] were studied via X-ray diffraction, polarisation optical microscopy, differential scanning calorimetry and dielectric spectroscopy. Layered lamellar mesophase was observed in both mixtures. Formamide-based mesophase was found more ordered and stable up to higher temperature (140°C). Ordering and stability of the mesophase was explained considering the higher polarity and dipolar–dipolar interactions of formamide. Dielectric spectroscopy demonstrates the large magnitudes of capacitance and permittivity (Cp ≈ 9 µF and ε ≈ 2428) for mesophase derived from formamide. Dynamical relaxation parameters of both mixtures were discussed and correlated with their structural aspects.  相似文献   

12.
The silylation of K2Ti4O9 x nH2O with organosilanes (methyl, n-butyl, n-octyl, n-dodecyl, n-octadecyltrimethoxysilanes and n-octadecyldimethylmethoxysilane) was conducted using the octylammonium-exchanged form as the intermediate. The surface coverage of the octadecylsilylated derivative was controlled by changing the employing amounts of octadecyltrimethoxysilane. The swelling behaviors of the octyl, dodecyl, and octadecylsilylated derivatives in organic solvents were investigated to show that the degree of the swelling varies depending on the kind of solvents, the alkyl chain length of the attached alkylsilyl groups, and the surface coverage. The octadecylsilylated derivative with the largest surface coverage was converted to film with a thickness of ca. 500 nm by casting the chloroform suspension on a substrate. The octadecylsilylated derivative showed a reversible thermoresponsive change of the basal spacing by ca. 0.5 nm in the temperature range between 15 and 60 degrees C.  相似文献   

13.
Sulfonated ormosil hydrogels (~80% water) were prepared using tetramethyl orthosilicate as a silica precursor and 2(4-chlorosulfonylphenyl)ethyltrichlorosilane to provide sulfonate functionality for ion-exchange and ion conductivity. Ruthenium(III) hexamine was used as a redox probe in electrochemical studies performed on porous carbon fibre paper electrodes impregnated with the gel. The gel-modified electrodes extracted Ru(NH3)63+ from solutions in 0.1 M CF3CO2Na(aq) with a partition coefficient of ~36, and with ~100% of the sulfonate sites being accessible for ion exchange. The Ru(NH3)63+/2+ couple exhibited reversible and facile electrochemistry in the gel, with a Ru(NH3)62+ diffusion coefficient of 4.9×10–8 cm2 s–1 determined by chronoamperometry. This is an order of magnitude higher than the mobility of this complex in Nafion. The hydrogel-modified electrodes were stable for days, and could be repeatedly loaded with Ru(NH3)63+.Special Issue to celebrate the 70th birthday of Professor Zbigniew Galus  相似文献   

14.
Fine powder of CaCO3 was dispersed in H2O, ethylene, glycol (EG), and 50% aqueous solution of polyethylene glycol (PEG). In all cases, the apparent viscosity, η, of the suspensions decreased with temperature. The results are discussed on the basis of the energy dissipation theory. The total energy dissipation of flow, ET(=ηaD2), per cm3 per sec was divided into two terms, i.e., Ep due to the interaction of flow units (flocs) and Ev, the viscous energy. Ev plays a dominant role when the viscosity of the medium, ηo, is large (e.g., for EG), whereas Ep is responsible for the overall flow behavior for the system with small ηo (e.g., for H2O). From the analysis of Ep with respect to the rate of shear, D, and the effective floc concentration, a parameter m2 was obtained, which is independent of D and of solid concentration, and serves as a measure of the extent of energy dissipation due to the interaction between flocs.  相似文献   

15.
Associating polymers which consist of water-soluble long-chain molecules containing a small fraction of hydrophobic groups (hydrophobes) behave as flocculants in aqueous suspensions. The effects of associating polymers on the rheological behavior are studied for single suspensions of particles with hydrophilic and hydrophobic surfaces, and their mixtures. For particles with hydrophilic surfaces, the suspensions are highly flocculated by a bridging mechanism, because the water-soluble chains adsorb onto hydrophilic surfaces. On the other hand, the particles with hydrophobic surfaces cannot be dispersed in water without polymer and the additions of a small amount of polymer are required for preparation of homogeneous suspensions. The associating polymer acts as a dispersant at low concentrations. However, further additions of polymer lead to a drastic increase in viscosity. Since the hydrophobes on one end of molecules adsorb onto hydrophobic surfaces and other hydrophobes tending from the particles can form micelles, the particles are connected by linkage of interchain associations. By mixing two suspensions of particles with hydrophilic and hydrophobic surfaces, the viscosity is substantially reduced and the flow becomes nearly Newtonian. The associating polymer in complex suspensions acts as a binder between the hydrophilic and hydrophobic surfaces. The hetero-flocculation which leads to the formation of composite particles may be responsible for the viscosity reduction of complex suspensions.  相似文献   

16.
We focused to highlight the effect of quenching on the development and ordering of non-aqueous lyotropic liquid crystalline phases. Lyotropic mesophases are prepared from binary mixtures of sodium dodecyl sulphate and ethylene glycol at varying concentrations 30:70 and 50:50 wt%. The obtained self-assembled phases are characterised by X-ray diffraction, polarisation optical microscopy, differential scanning calorimetry and dielectric spectroscopy to evaluate the structural, optical, thermal and dielectric behaviours. Structural and textural measurements confirmed mesomorphic and crystalline phases for both mixtures. Calorimetric study gives insight about the growth of new phases at ≈335 K and isotropic temperatures of these mixtures. Both the mixtures are quenched from 335 K to the 303 K to analyse the effect of quenching on the structure and ordering of mesophases. We noticed well-defined hexagonal liquid crystalline mesophases for both concentrations after quenching at 303 K. Dielectric and relaxation behaviours of quenched mesophases were also examined. Higher capacitance and dielectric strength are noticed for quenched mixtures. The application prospective of such phases is also discussed.  相似文献   

17.
The versatility of non-aqueous capillary electrophoresis (NACE) results mainly from the variety of physico-chemical properties of the different solvents. They provide solubility for a wide range of analytes, enable to control electrophoretic selectivity, but affect in some cases UV absorbance detection. The coupling of NACE to electrospray mass spectrometry (ESI-MS) allows to cope with the high UV cut-off of some CE relevant solvents (e.g., formamides). In this paper the pure organic solvents methanol, acetonitrile, dimethylsulfoxide, formamide, N-methylformamide and N,N-dimethylformamide are evaluated against water for the preparation of ammonium acetate electrolytes to separate the basic model substances 2-aminobenzimidazole, procaine, propranolol and quinine with NACE-MS. MS coupling is assisted with the sheath liquid water-isopropanol (1:4, v/v) with 0.1% formic acid. The goal of the paper is to assess the influence of the solvent on selectivity, separation speed, and peak efficiency for a given set of model compounds on a simple empirical basis. It should give the user an idea how the separation quality is changed when nothing but the running solvent is altered. The obtained efficiency results were discussed with respect to physico-chemical models described in literature (assuming longitudinal diffusion as the only source of band broadening), but no satisfying correlations with solvent properties could be traced. The feasibility of all six organic solvents for MS coupling was demonstrated and the influence of the separation solvent on the MS detection performance was compared. In the seven different solvents, the shortest run time was obtained with acetonitrile, the best peak resolution with the amphiprotic solvents (especially methanol) best peak efficiency with methanol and formamide, and the most sensitive ESI-MS detection with acetonitrile and methanol, but with only slight advantage to water.  相似文献   

18.
In this work, the static and dynamic light scattering measurements were used to investigate the solution properties and the aging effects on PVA/DMSO/water ternary system in dilute region at 25 °C. It was found that the phase separation and aggregate behavior occurs rapidly and obviously when DMSO mole fraction (X1) in the solvent mixture is between 0.2 and 0.33, especially at 0.25. In this solvent composition range, a broad peak which indicates phase separation and chain aggregation can be observed from static light scattering measurement. However, when DMSO mole fraction is increased to 0.37, no such peak is present. For this ternary system, the gelation mechanism and the relationship between the phase separation behavior and the gelation of the formed physical gels were also investigated through the gelation kinetic analyses in the dilute and semi-dilute region. It is concluded that the cononsolvency effect in the dilute solution is not the sole origin that affects the phase separation, aggregation, and gelation behavior for the ternary system in a higher polymer concentration range. The hydrodynamic factors such as the higher viscosity and slower polymer chain diffusion that are resulted from higher polymer concentration should be also considered.  相似文献   

19.
20.
Removal of boron from aqueous solution by clays and modified clays   总被引:5,自引:0,他引:5  
In order to increase the adsorption capacities of bentonite, sepiolite, and illite for the removal of boron form aqueous solution, the clay samples were modified by nonylammonium chloride. Specific surface areas of the samples were determined as a result of N2 adsorption-desorption at 77 K using the BET method. X-ray powder diffraction analysis of the clays and modified clays was used to determine the effects of modifying agents on the layer structure of the clays. The surface characterization of clays and modified clay samples was conducted using the FTIR technique before and after the boron adsorption. For the optimization of the adsorption of boron on clays and modified clays, the effect of pH and ionic strength was examined. The results indicate that adsorption of boron can be achieved by regulating pH values in the range of 8-10 and high ionic strength. In order to find the adsorption characteristics, Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms were applied to the adsorption data. The data were well described by Freundlich and Dubinin-Radushkevich adsorption isotherms while the fit of Langmuir equation to adsorption data was poor. It was reached that modification of bentonite and illite with nonylammonium chloride increased the adsorption capacity for boron sorption from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号