首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The radical polymerization of maleic anhydride(MA),styrene(ST)with the vinyl groups introduced onto the surface of the nano-sized silica via solution polymerization method was developed.The methacryloxypropyl nano-sized silica(MPNS)was used as macromonomer and polymerized with maleic anhydride and styrene by initiating with BPO in toluene.The structure and properties of MPNS/SMA nano-composite were characterized by FT-IR spectra and TEM.Meanwhile,it was applied as tanning agent compared with the traditional styrene-maleic anhydride copolymer in leather.It was found that the applied leather had better quality characteristics with the addition of the nano-sized silica.  相似文献   

2.
In this study, the use of low molecular weight oxidized polyethylenes (OxPE) with different molecular weight and acid number as a new type of compatibilizer in low density polyethylene (LLDPE)/org-clay nanocomposite preparation was examined. Nanocomposites having 5 phr (part per hundred) org-clay were prepared by melt processing. The effect of compatibilizer polarity and clay dispersion on the thermal, mechanical and barrier properties of the nanocomposites was investigated. It was observed that oxidized polyethylenes created a strong interfacial interaction between the clay layers and polymer phase based on the analysis of the linear viscoelastic behavior of the samples by small amplitude oscillatory rheometry. We showed that physical performance of the nanocomposites is not only affected by clay dispersion but also both melt viscosity and polarity of the oxidized polyethylene compatibilizers. It was found that oxygen permeability values of the nanocomposite samples prepared with the oxidized polyethylenes were lower than that of a sample prepared with conventional compatibilizer, maleic anhydride grafted polyethylene (PE-g-MA).  相似文献   

3.
Nanocellulose(NCC) was prepared through the acid hydrolysis of microcellulose(MCC) and was reacted with maleic anliydride to obtain carboxyl-functionized nanocellulose(MA-NCCs). The presence of .OH and .SO3H on the surface of rod-like MA-NCC was confirmed by Fourier transfonn infrared spectrometry(FTIR). Sulfonated poly(aryl ether ether ketone ketone)(Ph-SPEEKK) was synthesized with bis(4-fluorophenyl-methanone) and 2-phenylhydroquinone as monomer. MA-NCC/Ph-SPEEKK nanocomposite membranes with different MA-NCCs content were prepared, and their properties were characterized. Compared with Ph-SPEEKK, MA-NCC/Ph-SPEEKK nanocomposite membrane showed better mechanical and thermal properties and higher proton conductivity. The proton conductivity of the composite membrane with 4%(mass fraction) MA-NCCs under 80℃ was 0.095 S/cm. And its tensile strength reached 30.3 MPa, which was 21.2% higher than that of Ph-SPEEKK pure polymer membrane.  相似文献   

4.
Polypropylene (PP)/Montmorillonite (MMT) nanoclay based composite was prepared by melt compounding with maleic anhydride grafted polypropylene (MA-g-PP) as a compatibilizer in a twin-screw extruder, and the test specimens were injection molded. Mechanical properties such as tensile modulus, flexural modulus, yield strength and maximum percent strains were measured for pure PP and PP based nanocomposite to establish the effect of clay platelet reinforcement. The fracture properties were measured by using the essential work of fracture (EWF) method. PP/clay nanocomposite shows 25% improvement in specific EWF compared to pure PP. The variation of EWF parameters with loading rate is discussed, whilst the mechanisms of fracture are considered in a subsequent paper.  相似文献   

5.
Carbon nanotubes (CNTs) chemically functionalized were used to synthesize a series of novel nanocomposite hydrogels by in situ polymerization with acrylic acid (AA) and acrylamide (AM). A novel strategy was developed to prepare these hydrogels. CNTs were functionalized following a three-step chemical procedure: (i) purified carbon nanotubes (CNTsp) were partially surface oxidized to obtain CNTs with hydroxyl, carbonyl and carboxyl groups on their sidewalls (CNTsoxi), (ii) CNTsoxi were reacted with oxalyl chloride to obtain CNTs functionalized with acyl chloride groups (CNTsOCl), and (iii) CNTsOCl were reacted with acrylic acid (AA). The product, AA modified CNTsOCl (CNTsOCl-AA) was used to prepare the (CNTsOCl-AA-AM) nanocomposite hydrogels, where anhydride groups were tethered to the surface of the CNTsOCl-AA. The swelling process in water was evaluated as a consequence of the anhydride group hydrolysis, which broke some chemical links between CNTsOCl-AA and crosslinked AA-AM network. Equilibrium-swelling values of all hydrogels increased as the content of AA increased and were larger for AA-AM hydrogels than for CNTsOCl-AA-AM nanocomposite hydrogels. Young’s moduli of CNTsOCl-AA-AM nanocomposite hydrogels prepared with 1 or 2?wt.% AA, reached larger values than those measured for AA-AM hydrogels. This tendency was reversed when the AA content was raised to 3?wt.%.  相似文献   

6.
Melt spinning of nanocomposites prepared from syndiotactic poly(propylene) (sPP) and organolayered silicate (M‐ODA), containing bound octadecyl ammonium chains, was investigated. The influence of the nano‐filler reinforcement and the role of the addition of maleic anhydride grafted isotactic poly(propylene) (iPP‐g‐MA) as compatibilizer with respect to the fiber proportion was examined. The presence of nano‐filler, the drawing ratio, and the compatibilizer addition afforded increased tenacity of the fibers. Only in the presence of the compatibilizer high drawing ratio of the sPP nanocomposite fibers was achieved. Transmission electron microscopy (TEM) was applied to monitor morphology development during nanocomposite fiber spinning in the presence and the absence of the compatibilizer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Polyimide (PI) films were prepared by reacting 4,4′-(4,4′-isopropylidene-diphenoxy)-bis(phthalic anhydride) and 1,3-bis(4-aminophenoxy)benzene. The 4-phenylbutylamine-functionalized graphene sheets (PBA-GSs) used for the preparation of the PI nanocomposite films were prepared by mixing a dispersion of graphite oxide with a solution of the ammonium salt of 4-phenylbutylamine (PBA). PI nanocomposite films containing different amounts of PBA-GS (0–10 wt%) were compared in terms of their morphologies, thermal properties, and electrical and thermal conductivities. Only a small amount of PBA-GS was required to improve the thermal properties and thermal conductivities of the PI; the maximum enhancements in these parameters were observed at 1 and 3 wt% PBA-GS, respectively. In contrast, the electrical conductivity of the PI hybrid films continued to increase with increasing PBA-GS content from 1 to 10 wt%.  相似文献   

8.
Polypropylene layered silicate nanocomposites based on muscovite clay were prepared via melt compounding using Thermo Haake internal mixer. Muscovite was organically modified with cetyltrimethylammonium bromide (CTAB). Poly(propylene-g-maleic anhydride) copolymer (PP-g-MAH) and polypropylene-methyl polyhedral oligomeric silsesquioxane (PP-POSS) were used as a compatibilizer in the nanocomposite system at concentration of 3.0 wt% based on muscovite content. Consequently effect of compatibilizer on the mechanical properties of the nano–composites was characterized. It was found that the PP-g-MAH compatibiliser possess better overall mechanical properties than the nanocomposites with PP-POSS compatibilizer. The reason was partly due to better adhesion provided by compatibilization effect of PP-g-MAH than PP-POSS as exhibited in scanning electron micrographs.  相似文献   

9.
环氧树脂/桐油酸酐/蒙脱土纳米复合材料固化动力学   总被引:6,自引:0,他引:6  
环氧树脂/桐油酸酐/蒙脱土纳米复合材料固化动力学;固化反应;DSC  相似文献   

10.
A new thermally stable polyimide–silver nanocomposite containing dibenzalacetone moiety in the main chain was synthesized by a convenient ultraviolet irradiation technique. A precursor such as AgNO3 was used as the source of the silver nanoparticles. Polyimide 6 as a source of polymer was prepared by polycondensation reaction of 2,5-bis(4-aminobenzylidene) cyclopentanone 4 with pyromellitic anhydride 5 in m-cresol solution and in the presence of iso-quinoline as a base. The resulting nanocomposite film was characterized by FTIR spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Thermal gravimetric analyses (TGA), differential gravimetric analyses (DTG) and differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) confirmed the formation and dispersion of silver nanoparticles in polymer matrix having average size of ~20 nm. Incorporation of inorganic metal silver nanoparticles has improved the thermal behavior of the nanocomposite film as compared to pure polyimide film. Also 2,5-bis(4-aminobenzylidene) cyclopentanone 4 was synthesized by using a two-step reaction.  相似文献   

11.
针对传统聚氨酯色浆中色基与聚氨酯结合力弱(分子间力),导致成品革色牢度差、色迁移严重等技术难题,本文设计合成了一种反应型彩色二元醇:在四氢呋喃介质中,控制n(对苯二胺)∶n(乙酸酐)=1.00∶0.95,0~5℃下,用乙酸酐将对苯二胺单酰化反应15 h,得到对氨基乙酰苯胺(产率85%),经重氮化,与过量摩尔分数为5%N-苯基二乙醇胺偶合制得了一种含两个端羟甲基的偶氮化合物4-乙酰基胺基-4'-N,N-二羟乙氨基偶氮苯(产率82%);将其与聚酯二元醇、聚醚二元醇以不同比例混合,与双异氰酸酯预聚、扩链后形成红色聚氨酯树脂色浆,在离型纸上铺展成膜,其断裂增长率443.0%,断裂相对强度125.5 g,色迁移量21.4μg,进口同类产品形成膜后的断裂增长率、断裂相对强度与色迁移量分别为442.2%、125.3 g和29.2μg.合成产品优于同类进口产品。  相似文献   

12.
Photo‐oxidation of syndiotactic polypropylene–sPP/organoclay nanocomposites was performed. Nanocomposites were prepared in situ by melt compounding of sPP, compatibilizer (iPP grafted with maleic anhydride–iPP‐g‐MAN) and organoclay filler ME C18 (modified with octadecyl ammonium chains in intergaleries of layered silicate, of which silicate layers (about 1 nm thin) were exfoliated). The influence of ME C18 nanoparticles alone (in content region 1 to 15 wt%) and together with compatibilizer iPP‐g‐MAN on the photostability of the sPP nanocomposite was studied. It was found that the silicate ME C18 nanoparticles alone catalyze the photooxidation and shorten the induction period of photo‐oxidation to one fourth (at the content of 5 wt% of ME C18) in comparison with unfilled sPP) and the presence of compatibilizer supports the photo‐oxidation of sPP nanocomposite. The ME C18 nanoparticles decrease the efficiency of UV stabilizers. The rate of photo‐oxidation of sPP/clay nanocomposite after the induction period is significantly higher than unfilled sPP. The mechanism of photo‐oxidation is discussed.  相似文献   

13.
Polypropylene nanocomposite blown films containing organoclay were prepared by melt extrusion followed by film blowing. The effect of quantity of organically modified montmorillonite, and the compatibilizer (polypropylene-g-maleic anhydride, PP-g-MA), also the draw-down ratio on the morphology and oxygen permeability of nanocomposite films were investigated. Various characterization instruments were employed to identify the morphology, crystallinity, and dynamic mechanical properties of nanocomposite films. The oxygen permeability coefficient was evaluated based on ASTM D1434.X-Ray diffractometry pattern for the most impermeable sample shows that the morphology of nanocomposite film is a coexistence of intercalated tactoids and exfoliated layers which is confirmed by transmission electron microscope micrographs. The results show that the oxygen permeability coefficient is influenced by the quantity of organoclay and compatibilizer, also the morphology and orientation of layered silicate.  相似文献   

14.
Mesoporous titania-grafted poly(styrene-divinylbenzene)/maleic anhydride [P(St-DVB)/MA] nanocomposite microspheres were prepared by an open ring reaction method.The titania nanoparticles were first modified by attachment of amino groups to their surface to prevent particle aggregation,and to allow the nanoparticles to covalently bond the polymer microspheres,the surface of which was modified by attachment of MA functional groups to enable the polymer to retain their porous structures and to react with the a...  相似文献   

15.
Highly refractive, heat-resistant BaTiO3 nanocomposite films were fabricated via in situ polymerization to homogeneously disperse barium titanate (BT) nanoparticles into polyimide (PI) matrix. BT nanoparticles surface-modified with O-phosphorylethanol phthalimide (PPHI) were employed to the in situ polymerization in which condensation reactions of a diphthalic anhydride and a diamine were conducted to form the prepolymer of poly(amic acid) (PAA) that was thermally imidized in the following step. The nanoparticles surface-modified were added to PAA solution at different times in the polymerization to examine the effect of PAA molecular weight on the refractive index (RI) of the nanocomposite films, which indicated that relatively low molecular weights (<10,000) of PAA formed at the point of nanoparticle addition was appropriate for enhancement of nanocomposite RI. An additional treatment of chemical imidization using acetic acid anhydride and pyridine, which was followed by the thermal imidization, was performed to examine the effect of polyimide structure on RI of nanocomposite films. The RI of nanocomposite films with excellent thermal stability could be successfully enhanced to n = 1.88 by the chemical imidization.  相似文献   

16.
Abstract

A hybrid nanocomposite based on ethylene propylene diene monomer/carboxylated styrene-butadiene rubber (EPDM/XSBR) blend with different concentrations (0–7 phr) of multiwall carbon nanotube (MWCNT) was prepared on a two-roll mill. The role of grafted maleic anhydride (EPDM-g-MA) as compatibilizer and the effect of different concentrations of MWCNT on mechanical properties, morphology, rheological and curing characteristics of nanocomposites were investigated. The curing behavior of the prepared nanocomposites was studied using a rheometer. Also, the microstructure of nanocomposites was observed using TEM. By increasing the MWCNT concentration in the compatible blends, the curing time and scorch time of the blends decreased, while the maximum and minimum torque increased. Failure surface morphology studies showed that the existence of EPDM-g-MAH compatibilizer improved the distribution of MWCNT within the polymer matrix and uniform distribution of MWCNT with a small amount of aggregation was obtained. On the other hand, the presence of MWCNT in the matrix led to a sharper surface of the fracture. Also, mechanical properties such as modulus, tensile strength, hardness, fatigue, resilience and elongation-at-break for compatible EPDM/XSBR nanocomposite showed better results than those for incompatible composite.  相似文献   

17.
Repair and regeneration of bone defects with particular shape may be enhanced by in situ forming biomaterials which can be used in minimal invasive surgery. This study is aimed to prepare novel in situ forming biodegradable nanocomposites based on poly(3‐allyloxy‐1,2‐propylene) succinate (PSAGE) and nanosized hydroxyapatite (HA). These nanocomposite materials contain poly(ester‐anhydride) (PEA) microspheres embedded in a polyester matrix prepared by crosslinking PSAGE with oligo(1,2‐propylene maleate) and methacrylic monomers. Methyl methacrylate and one of hydrophilic oligo(ethylene glycol) methacrylates with different functionality and various length of oligooxyethylene chains were used as polymerizable diluents. Incorporation of microspheres which degrade faster than crosslinked polyester matrices enables formation of porous structure in situ. The obtained materials are liquid before curing and harden in several minutes with moderate exothermic effect. The effect of the composition of nanocomposite materials on selected properties, such as water sorption, mechanical strength, porosity and hydrolytic degradation process, was investigated. Rheological behavior and injectability of liquid formulations were studied. Analysis by energy dispersive spectroscopy confirmed the presence of characteristic features of HA in the nanocomposite materials. The morphology of the cured nanocomposites subjected to hydrolytic degradation was evaluated by scanning electron microscopy. The MTS cytotoxicity assay was carried out for extracts from crosslinked materials using hFOB1.19 cells. It was found that the extracts exhibit a dose‐dependent cytotoxic response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
磺化苯乙烯-马来酸酐共聚物   总被引:4,自引:0,他引:4  
磺化苯乙烯-马来酸酐共聚物是由苯乙烯-马来酸酐共聚物直接磺化并中和成钠盐制备。由于它分子中含有很多磺酸及羧酸负离子,因此,是一很好的阴离子聚电解质,被广泛用于泥浆稀释剂、水泥添加剂和皮革鞣剂等。  相似文献   

19.
A series of polyimide nanocomposite (PINC) films were prepared by using poly(amic acid) and Ba, Sr, Sn, TiO3 nanoparticles via in-situ polymerization method. Poly(amic acid) was synthesized from benzophenone tetracarboxylic anhydride and diamino diphenyl ether by ring-opening polyaddition reaction. The PINC films were characterized by FTIR spectroscopy. The thermal properties of PINC films were investigated by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) methods. The prepared PINC showed major weight loss in the range of 550–600°C in nitrogen atmosphere. These had char yield in the range of 50–60% at 800°C. The morphological studies of PINC films were carried out using SEM method.  相似文献   

20.
Polypropylene (PP)-montmorillonite nanocomposites have been prepared using isotactic PP homopolymers with different rheological properties, and a maleic anhydride grafted PP. Morphology and structure of the composites were investigated by using X-ray techniques (WAXD, SAXS) and transmission electron microscopy (TEM). The absence of pristine clusters of the clay and the presence of intercalated and exfoliated structures were shown for all the investigated samples. The nanocomposite prepared by using maleic anhydride grafted PP showed a widespread exfoliation. The thermal behaviour and degradation have been studied by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The incorporation of the montmorillonite improves the thermal stability in air atmosphere of all the investigated PPs, thanks to a physical barrier effect of the silicate layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号