首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Raman spectra of the single crystal of K2Zn(SO4)2·6H2O belonging toC 2h 5 space group in the 40–1200 cm−1 region in different scattering geometries and their spectra ofthe microcrystalline salt in the 1500-50 cm−1 region have been reported. The dynamics of the crystal has been described in terms of 186 phonon modes under the unit cell approximation. The weak bands in the region 400–900 cm−1 have been assigned to the libratory modes of H2O molecules in contradiction to the assignments reported by Ananthanarayanan. The ambiguities existing in the literature about the assignments ofν 2 c andν 5 c modes of [Zn(H2O)6]2+ have also been removed. The translatory and libratory modes of different units of the crystal have been identified and assignments are made using farir and Raman data on various isomorphous tutton salts. It has been inferred that both SO 4 2− tetrahedron and [Zn(H2O)6]2+ octahedron undergo linear as well as angular distortions from their free state symmetries in the crystal.  相似文献   

2.
Abstract

The infrared spectra (700–100 cm?1) of the complexes [M(ox)2(H2O)2] (ox = 8-hydroxyquinolinate anion, M = Mn, Fe, Co, Ni, Cu, Zn) are discussed. For the purposes of assignment of the metal ligand modes, deuterated 8-hydroxyquinoline-d 7 was prepared by the Skraup synthesis and the spectra of the deuterated complexes were compared with those of the unlabelled species. Furthermore, [64Zn(ox)2(H2O)2] and [68Zn(ox)2(H2O)2] were prepared by reaction of 64ZnSO4 and 68ZnSO4 with 8-hydroxyquinoline and the effects of metal isotope labelling on the spectra were examined and compared with earlier isotopic data on the nickel and zinc complexes.  相似文献   

3.
The infrared spectra of (NH4)2M″(SO4)2.6H2O has been analysed in the region 4000–250 cm−1. The dynamics of each crystal has been discussed in terms of 234 phonon modes, including 3 acoustical ones, using the unit cell approximation. The ambiguity in the assignments of the bands in the region 900–500 cm−1 has been removed by assigning the bands in this region to the libratory modes of H2O molecules. It has been concluded that the NH 4 + and SO 4 2− ions have a symmetry lower thanT dand also the complex [M″(H2O)6]2+ has a symmetry lower than O h . The hydrogen bonding is the strongest in the Ni-salt and the weakest in the Mg-salt.  相似文献   

4.
Raman spectra of jáchymovite, (UO2)8(SO4)(OH)14·13H2O, were studied, complemented with infrared spectra, and compared with published Raman and infrared spectra of uranopilite, [(UO2)6(SO4)O2(OH)6(H2O)6]·6H2O. Bands related to the stretching and bending vibrations of (UO2)2+, (SO4)2−, (OH) and water molecules were assigned. U O bond lengths in uranyl and O H· · ·O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The IR spectra and polarized Raman spectra of crystals of hexahydrates of zinc potassium and ammonium sulfates have been obtained experimentally at 93 K and at room temperature. The frequencies and modes of normal vibrations of the octahedral complex [Zn(H2O)6]2+ have been calculated. The assignment of the observed lines of the internal and external vibrations of the crystal cell has been made by calculations and by factor-group analysis. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 67, No. 2, pp. 162–168, March–April, 2000.  相似文献   

6.
The IR spectra and polarization Raman spectra of Kal(SO4)2·12(H2O) and Kal(SO4)2·12[H2O)0.3(D2O)0.7] crystals at 93 K and room temperature have been obtained experimentally. The vibrational spectra of structural elements of potassium alum — the complexes [Al(H2O)6 3+ and [Al(D2O)6]3+ — have been calculated. The vibrational spectra have been interpreted based on the calculation and factor-group analysis data. The spectral data obtained point to the fact that, in the crystals considered, the sulfate ions are partially disordered and there exist two crystallographically different types of water molecules.  相似文献   

7.
The electron paramagnetic resonance of VO2+ ion impurities has been studied in certain crystalline solids at ~ 9.45 GHz. VO2+ shows an isotropic spectra in Mg(ClO4)2·6H2O, RbBr, RbI, CsCl, thiourea, NH4HC2O4·12H2O and urea oxalate at room temperature, and has preferential orientation in MgSeO4·6H2O, KHC2O4, Rb2SO4 and (NH4)2M″(SeO4)2·6H2O (M″ = Zn, Co) single crystals. The line broadening of the EPR spectra of VO2+ in (NH4)2Co(SeO4)2·6H2O observed on cooling the crystal is explained on the basis of host spin lattice relaxation narrowing. The EPR spectra have been analysed and the spin-Hamiltonian parameters evaluated.  相似文献   

8.
Raman spectra of pseudojohannite were studied and related to the structure of the mineral. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (SO4)2− units and of water molecules. The published formula of pseudojohannite is Cu6.5(UO2)8[O8](OH)5[(SO4)4]·25H2O. Raman bands at 805 and 810 cm−1 are assigned to (UO2)2+ stretching modes. The Raman bands at 1017 and 1100 cm−1 are assigned to the (SO4)2− symmetric and antisymmetric stretching vibrations. The three Raman bands at 423, 465 and 496 cm−1 are assigned to the (SO4)2−ν2 bending modes. The bands at 210 and 279 cm−1 are assigned to the doubly degenerate ν2 bending vibration of the (UO2)2+ units. U O bond lengths in uranyl and O H···O hydrogen bond lengths were calculated from the Raman and infrared spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Raman spectra of single crystals of (NH4)2M(SO4)2·6 H2O whereM=Mg, Zn Ni or Co have been recorded using λ 2537 excitation. Interesting results concerning the substitution of the divalent atoms in the double sulphate lattice on the sulphate and ammonium frequencies are observed. The spectra of these double sulphates are discussed in the light of the known crystal structure details and in relation, to the spectra of the corresponding potassium double sulphates, reported recently by the author. The Raman spectrum of NaNH4SO4·2 H2O has also been recorded for the first time and the results obtained are also included.  相似文献   

10.
Single crystals of [(R)-C5H14N2][Cu(SO4)2(H2O)4]·2H2O (1) were grown through the slow evaporation of a solution containing H2SO4, (R)-C5H12N2 and CuSO4·5H2O. These crystals spontaneously transform to [(R)-C5H14N2]2[Cu(H2O)6](SO4)3 (2) over the course of four days at room temperature. The same single crystal on the same mounting was used for the determination of the structure of (1) and the unit cell determination of (2). A second single crystal of the transformed batch has served for the structural determination of (2). Compound 1 crystallizes in the noncentrosymmetric space group P21 (No. 4) and consists of trimeric [Cu(SO4)2(H2O)4]2? anions, [(R)-C5H14N2]2+ cations and occluded water molecules. Compound 2 crystallizes in P21212 (No. 18) and contains [Cu(H2O)6]2+ cations, [SO4]2? anions and occluded water molecules. The thermal decompositions of compounds 1 and 2 were studied by thermogravimetric analyses and temperature-dependent X-ray diffraction.  相似文献   

11.
Uranopilite, [(UO2)6(SO4)O2(OH)6(H2O)6](H2O)8, the composition of which may vary, can be understood as a complex hydrated uranyl oxyhydroxy sulfate. The structure of uranopilite from different locations has been studied by Raman spectroscopy at 298 and 77 K. A single intense band at 1009 cm−1 assigned to the ν1 (SO4)2− symmetric stretching mode shifts to higher wavenumbers at 77 K. Three low‐intensity bands are observed at 1143, 1117 and 1097 cm−1. These bands are attributed to the (SO4)2− ν3 anti‐symmetric stretching modes. Multiple bands provide evidence that the symmetry of the sulfate anion in the uranopilite structure is lowered. Three bands are observed in the region 843 to 816 cm−1 in both the 298 and 77 K spectra and are attributed to the ν1 symmetric stretching modes of the (UO2)2+ units. Multiple bands prove the symmetry reduction of the UO2 ion. Multiple OH stretching modes prove a complex arrangement of OH groupings and hydrogen bonding in the crystal structure. A series of infrared bands not observed in the Raman spectra are found at 1559, 1540, 1526 and 1511 cm−1 attributed to δ UOH bending modes. U‐O bond lengths in uranyl and O H/dotbondO bond lengths are calculated and compared with those from X‐ray single crystal structure analysis. The Raman spectra of uranopilites of different origins show subtle differences, proving that the spectra are origin‐ and sample‐dependent. Hydrogen‐bonding network and its arrangement in the crystal structure play an important role in the origin and stability of uranopilite. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
IR spectra of BeSO4.4H2O and its deuterated analogue at ∼300 K and ∼110 K are reported in the region 4000–1200 cm−1 using thin film and nujol mull techniques. The observed bands have been assigned as the internal modes of the water and the overtones and combinations of various modes using the recently revised assignments of SO4 2− and Be(aq)4 fundamentals in the region 1200–250 cm−1 (Srivastavaet al 1976). The splitting of the internal modes of water has been discussed in the light of the effects of deuteration and cooling and it is shown that all the water molecules in a unit cell are asymmetric but crystallographically equivalent.  相似文献   

13.
Raman spectra of single crystals of K2M(SO4)2 · 6 H2O where M=Mg, Zn, Ni or Co have been recorded for the first time usingλ 2537 as the exciting radiation. The corresponding five single sulphates have also been studied. Interesting results concerning the substitution of magnesium, zinc, nickel or cobalt in the double sulphate lattice on the sulphate frequencies are observed. The lattice spectra of these double sulphates are analysed group theoretically and discussed in relation to the lattice spectra of the corresponding individual sulphates. Certain new results concerning the Raman spectra of the individual sulphates have also been obtained and in the case of CoSO4 · 7 H2O the spectrum has been recorded for the first time.  相似文献   

14.
We propose a new method for obtaining K2Co x Ni1–x (SO4)2⋅6H2O (x = 0, 0.4, 0.8, 1) crystals, involving the use of the chlorides (CoCl2⋅6H2O and NiCl2⋅6H2O) in an aqueous solution instead of the widely used sulfates. We have studied the transmission spectra of the grown single crystals in the range λ = 200–900 nm and the IR reflectance spectra in the 2.5–20 μm region. We have observed a change in the position and intensity of the absorption bands as a function of the composition of the crystals. Based on the Tanabe–Sugano diagrams, we determined the crystal field splitting (Dq) and its dependence on the nickel concentration. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 126–130, January–February, 2009.  相似文献   

15.
The work presents the IR and Raman spectra in the range 400–4000 cm?1 of simple and double salts of hexamolybdotelluric (VI) acid of the general formula M3[TeMo6O24nH2O and (NH4)2xM3?x [TeMo6O24mH2O respectively, and of substitutive telluromolybdates with the wolframite structure MTeyMo1?yO4, where M = Co, Zn, Ni and Mn. In this range the modes have been assigned to stretching vibrations of appropriate Mo-O bonds. Approximate values of force constants for these bonds have been computed and compared with the literature values reported for transition metal molybdates and ammonium heptamolybdate.  相似文献   

16.
A comparative analysis has been carried out on the Raman spectra of FeSO4·nH2O (n = 1, 4, 7) including the 2D‐analogs. The effects of changing the degrees of hydration have been found from the lattice, SO42− internal, and H2O internal modes. Increasing degrees of hydration shift the intense ν1(SO4) peak to lower wavenumbers and reduce the amount of splitting on the ν3(SO4) peaks. Some of the water librational bands cause the broadening of the ν4(SO4) peaks in FeSO4·7H2O and the ν2(SO4) peaks in FeSO4·7D2O. The ν2(H2O) band in FeSO4·H2O is red‐shifted in excess of 100 cm−1 relative to the unperturbed H2O band. Between 240 and 190 K and between 140 and 90 K in the spectra of FeSO4.4H2O, two potential phase transitions have been identified from the changes in the lattice and water‐stretching regions. The resolution of the ν1(H2O) and ν3(H2O) bands in FeSO4·4H2O and FeSO4·H2O also improved sharply at low temperatures. The capability of distinguishing various forms of FeSO4 hydrates unambiguously makes the Raman technique a potential analytical tool for the identification of sulfate minerals on planetary surfaces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The Raman spectrum of bukovskýite [Fe3+2(OH)(SO4)(AsO4)· 7H2O] has been studied and compared with that of an amorphous gel containing specifically Fe, As and S, which is understood to be an intermediate product in the formation of bukovskýite. The observed bands are assigned to the stretching and bending vibrations of (SO4)2− and (AsO4)3− units, stretching and bending vibrations and vibrational modes of hydrogen‐bonded water molecules, stretching and bending vibrations of hydrogen‐bonded (OH) ions and Fe3+ (O,OH) units. The approximate range of O H···O hydrogen bond lengths was inferred from the Raman spectra. Raman spectra of crystalline bukovskýite and of the amorphous gel differ in that the bukovskýite spectrum is more complex, the observed bands are sharp and the degenerate bands of (SO4)2− and (AsO4)3− are split and more intense. Lower wavenumbers of δ H2O bending vibrations in the spectrum of the amorphous gel may indicate the presence of weaker hydrogen bonds compared to those in bukovskýite. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Raman spectroscopy has been used to characterise four natural halotrichites: halotrichite FeSO4.Al2(SO4)3. 22H2O, apjohnite MnSO4.Al2(SO4)3.22H2O, pickingerite MgSO4.Al2(SO4)3.22H2O and wupatkiite CoSO4.Al2(SO4)3.22H2O. A comparison of the Raman spectra is made with the spectra of the equivalent synthetic pseudo‐alums. Energy dispersive X‐ray analysis (EDX) was used to determine the exact composition of the minerals. The Raman spectrum of apjohnite and halotrichite display intense symmetric bands at ∼985 cm−1 assigned to the ν1(SO4)2− symmetric stretching mode. For pickingerite and wupatkiite, an intense band at ∼995 cm−1 is observed. A second band is observed for these minerals at 976 cm−1 attributed to a water librational mode The series of bands for apjohnite at 1104, 1078 and 1054 cm−1, for halotrichite at 1106, 1072 and 1049 cm−1, for pickingerite at 1106, 1070 and 1049 cm−1 and for wupatkiite at 1106, 1075 and 1049 cm−1 are attributed to the ν3(SO4)2− antisymmetric stretching modes of ν3(Bg) SO4. Raman bands at around 474, 460 and 423 cm−1 are attributed to the ν2(Ag) SO4 mode. The band at 618 cm−1 is assigned to the ν4(Bg) SO4 mode. The splitting of the ν2, ν3 and ν4 modes is attributed to the reduction of symmetry of the SO4 and it is proposed that the sulphate coordinates to water in the hydrated aluminium in bidentate chelation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The electron spin resonance of VO2+ is studied in single crystals of Cs2M″ (SeO4)2·6H2O (M″ = Zn, Co) from 290 to 77 K at ~ 9.45 GHz. The line broadening of VO2+ spectra on cooling the Cs2Co(SeO4)2·6H2O crystal is explained on the basis of host spin-lattice relaxation narrowing. T1 for Co2+ is estimated to be ≈ 1.7 × 10?12 sec. at 290 K.  相似文献   

20.
The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2]·7H2O has been studied by Raman spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands are observed and are resolved into component bands. Two intense bands at 859 and 830 cm−1 are assigned to the ν1 (AsO4)3− symmetric stretching and ν3 (AsO4)3− antisymmetric stretching modes. The comparatively sharp band at 976 cm−1 is assigned to the ν1 (SO4)2− symmetric stretching mode and a broad‐spectral profile centered upon 1097 cm−1 is attributed to the ν3 (SO4)2− antisymmetric stretching mode. A comparison of the Raman spectra is made with other arsenate‐bearing minerals such as carminite, clinotyrolite, kankite, tilasite and pharmacosiderite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号