首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oriented stable binding of functional proteins on surfaces is of fundamental interest for receptor/ligand studies in atomic force microscopy (AFM) and surface plasmon resonance (SPR) experiments. Here we have chosen the His6-tagged carboxyl-tail (C-tail) of the alpha1c-subunit of the L-type Ca2+ channel and calmodulin (CaM) as its cognitive partner as a model system to develop a new functional surface. Covalently attached self-assembled monolayers on ultraflat gold containing NTA-thiols to which the His6-tagged C-tail was bound and thiols with triethylene-glycol groups as matrix-thiols represented the system of choice. The topography of this surface was characterized using AFM; its ability to bind C-tail proteins oriented and stable was confirmed by SPR measurements and by complementary force spectroscopy experiments with a CaM4-construct covalently attached to the tip. The developed anchoring strategy can now be used to study receptor/ligand interactions in general applying force spectroscopy and SPR on His6-tagged proteins oriented immobilized onto this new NTA-functionalized self-assembled monolayer.  相似文献   

2.
Poly(isobutene-alt-maleic acid)s modified with p-tert-butylphenyl or adamantyl groups interact with beta-cyclodextrin self-assembled monolayers (beta-CD SAMs) by inclusion of the hydrophobic substituents in the beta-cyclodextrin cavities. The adsorption was shown to be strong, specific, and irreversible. Even with a monovalent competitor in solution, adsorption to the beta-CD SAMs was observed, and desorption proved impossible. The adsorbed polymer layer was very thin as evidenced by surface plasmon resonance spectroscopy and AFM. Apparently, all or most hydrophobic groups of the polymers were employed efficiently in multivalent binding, as was further supported by the absence of specific binding of beta-CD-modified gold nanoparticles to the polymer surface assemblies. Supramolecular microcontact printing of the polymers onto the beta-CD SAMs led to assembly formation in the targeted areas of the substrates.  相似文献   

3.
Surface properties have a significant influence on the performance of biomedical devices. The influence of surface chemistry on the amount and distribution of adsorbed proteins has been evaluated by a combination of atomic force microscopy (AFM) and surface plasmon resonance (SPR). Adsorption of albumin, fibrinogen, and fibronectin was analyzed under static and dynamic conditions, employing self-assembled monolayers (SAMs) as model surfaces. AFM was performed in tapping mode with antibody-modified tips. Phase-contrast images showed protein distribution on SAMs and phase-shift entity provided information on protein conformation. SPR analysis revealed substrate-specific dynamics in each system investigated. When multi-protein solutions and diluted human plasma interacted with SAMs, SPR data suggested that surface chemistry governs the equilibrium composition of the protein layer.  相似文献   

4.
This paper describes the synthesis and electrochemistry of biferrocenyl-terminated dendrimers and their beta-cyclodextrin (beta-CD) inclusion complexes in aqueous solution and at surfaces. Three generations of poly(propylene imine) (PPI) dendrimers, decorated with 4, 8, and 16 biferrocenyl (BFc) units, respectively, were synthesized. A water-soluble BFc derivative forms stable inclusion complexes with beta-CD. The intrinsic binding constant is K(i)=2.5 x 10(4) M(-1). The BFc dendrimers were solubilized in water by complexation of the end groups with beta-CD, resulting in large water-soluble supramolecular assemblies. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) showed that all the end groups are complexed to beta-CD. Adsorption of the dendrimers at self-assembled monolayers (SAMs) of heptathioether-functionalized beta-CD on gold ("molecular printboards") resulted in stable monolayers of the dendrimers due to the formation of multivalent host-guest interactions between the BFc end groups of the dendrimers and the immobilized beta-CD molecules. The number of interacting end groups is 3, 4, and 4 for dendrimer generations 1, 2, and 3, respectively. The complexation of BFc to beta-CD is sensitive to the oxidation state of the BFc unit. Oxidation of neutral BFc-Fe(2) ((II,II)) to the cationic, mixed-valence biferrocenium BFc-Fe(2) ((II,III)+) resulted in dissociation of the host-guest complexes. Scan-rate-dependent CV and DPV analyses of the dendrimer-beta-CD assemblies immobilized at the beta-CD host surface and in solution revealed that the dendrimers are oxidized in three steps. First, the surface-beta-CD-bound BFc moieties are oxidized to the mixed-valence state, Fe(2) ((II,III)+), followed by the oxidation of the non-surface-interacting BFc groups to the Fe(2) ((II,III)+) state. The third step involves the oxidation of all the BFc moieties to the Fe(2) ((III,III)2+) state.  相似文献   

5.
We have undertaken a structural and functional study of self-assembled monolayers (SAMs) formed on gold from a series of alkylthiol compounds containing terminal multivalent chelators (MCHs) composed of mono-, bis-, and tris-nitrilotriacetic acid (NTA) moieties. SAMs were formed from single-component solutions of the mono-, bis-, and tris-NTA compounds, as well as from mixtures with a tri(ethylene glycol)-terminated alkylthiol (EG(3)). Contact angle goniometry, null ellipsometry, and infrared spectroscopy were used to explore the structural characteristics of the MCH SAMs. Ellipsometric measurements show that the amount of the MCH groups on surfaces increases with increasing mol % of the MCH thiols in the loading solution up to about 80 mol %. We also conclude that mixed SAMs, prepared in the solution composition regime 0-30 mol % of the MCH thiols, consist of a densely packed alkyl layer, an amorphous ethylene glycol layer, and an outermost layer of MCH groups exposed toward the ambient. Above 30 mol %, a significant degree of disorder is observed in the SAMs. Finally, functional evaluation of the three MCH SAMs prepared at 0-30 mol% reveals a consistent increase in binding strength with increasing multivalency. The tris-NTA SAM, in particular, is enabled for stable and functional immobilization of a His6-tagged extracellular receptor subunit, even at low chelator surface concentrations, which makes it suitable for applications when a low surface density of capturing sites is desirable, e.g., in kinetic analyses.  相似文献   

6.
To build highly specific surfaces using aptamer affinity reagents, the effects of linker and coadsorbents were investigated for maximizing target binding and specificity for aptamer-based self-assembled monolayers (SAMs) supported on gold. An aptamer that binds the protein thrombin was utilized as a model system to compare different mixed monolayer systems toward maximizing binding and selectivity to the immobilized aptamer. Important factors used to optimize binding characteristics of thrombin to the aptamer-based monolayer films include changes in design elements of the linker and different coadsorbent thiols. Binding events measured by surface plasmon resonance (SPR) and ellipsometry showed that the binding performance of the aptamer SAMs depends principally on the linker and to a lesser extent on the coadsorbent. SAMs formed with HS-(CH2)6-OP(O)2O-(CH2CH2O)6-TTTTT-aptamer exhibited a 4-fold increase in binding capacity versus SAMs made using HS-(CH2)6-TTTTT-aptamer. Furthermore, SAMs made using HS-(CH2)6-OP(O)2O-(CH2CH2O)6-TTTTT-aptamer showed nearly complete specificity for thrombin versus bovine serum albumin (BSA, less than 2% bound), while a SAM incorporating a random DNA fragment (HS-(CH2)6-OP(O)2O-(CH2CH2O)6-TTTTT-RANDOM) showed little binding of thrombin. Irrespective of the aptamer-linker system, use of HS-(CH2)11(OCH2CH2)3OH, referred to as EG(3), as a coadsorbent enhanced binding of thrombin by approximately 2.5-fold compared to that of HS-(CH2)6-OH (mercaptohexanol, MCH).  相似文献   

7.
The multivalent binding of a supramolecular complex at a multivalent host surface by combining the orthogonal beta-cyclodextrin (CD) host-guest and metal ion-ethylenediamine coordination motifs is described. As a heterotropic, divalent linker, an adamantyl-functionalized ethylenediamine derivative was used. This was complexed with Cu(II) or Ni(II). The binding of the complexes to a CD self-assembled monolayer (SAM) was studied as a function of pH by means of surface plasmon resonance (SPR) spectroscopy. A heterotropic, multivalent binding model at interfaces was used to quantify the multivalent enhancement at the surface. The Cu(II) complex showed divalent binding to the CD surface with an enhancement factor higher than 100 relative to the formation of the corresponding divalent complex in solution. Similar behavior was observed for the Ni(II) system. Although the Ni(II) system could potentially be trivalent, only divalent binding was observed at the CD SAMs, which was confirmed by desorption experiments.  相似文献   

8.
This paper describes the use of surface plasmon resonance (SPR) spectroscopy and self-assembled monolayers (SAMs) to understand the characteristics of surfaces that promote the adsorption of proteins at high ionic strengths (high-salt conditions). We synthesized SAMs presenting different multimodal ligands and determined the influence of surface composition, solution composition, and the nature of the protein on the extent of protein adsorption onto the SAMs. Our results confirm that hydrophobic interactions can contribute significantly to protein adsorption under high-salt conditions. In particular, the extent of protein adsorption under high-salt conditions increased with increasing surface hydrophobicity. The extent of protein adsorption was also influenced by the solution composition and decreased with an increase in the chaotropicity of the anion. The combination of SPR and SAMs is well-suited for studying the interaction of proteins with complex surfaces of relevance to chromatography.  相似文献   

9.
The kinetics of enzymatic surface-initiated polymerization of PHB on gold surface has been examined by SPR and the resultant polymer layers characterized by AFM and FT-IR spectrometry. The immobilized enzyme catalyzed surface-initiated polymerization of 3HB-CoA, resulting in the formation of a polymer brush on the surface. The rate of polymer growth from the surface was monitored by SPR in real-time. Polymer growth as measured by the increase in the resonance angle showed no apparent lag phase during the polymerization reaction. SPR analysis also revealed that the thickness of the polymer film could be controlled by varying the initial enzyme density on the surface. The average thicknesses of the PHB film after polymerization reaction were 95, 45 and 15 nm for the surfaces that were treated with 0.5, 0.3 and 0.1*10(-6) M of enzyme, respectively. The binding of PHA synthase at different concentration to the mixed SAMs and subsequent polymerization.  相似文献   

10.
Ferrocene nanotubes were fabricated by binding carboxylic acid-derivatized ferrocenes onto template peptide nanotubes via hydrogen bonding. When these ferrocene-functionalized nanotubes were incubated with beta-cyclodextrin (beta-CD) self-assembled monolayers (SAMs) coated on patterned Au substrates in solution, the ferrocene nanotubes recognized and attached onto the beta-CD SAMs via host-guest molecular recognition. The ferrocene nanotubes were also observed to recognize the certain cavity size of CD. The attachment/detachment of nanotubes on the beta-CD SAMs was controlled electrochemically by tuning the redox states of ferrocene nanotubes. This electric field-responsive building block may be applied to build nanometer-sized switching components in electronics and sensors.  相似文献   

11.
Interactions of peptides and proteins with inorganic surfaces are important to both natural and artificial systems; however, a detailed understanding of such interactions is lacking. In this study, we applied new approaches to quantitatively measure the binding of amino acids and proteins to gold surfaces. Real‐time surface plasmon resonance (SPR) measurements showed that TEM1‐β‐lactamase inhibitor protein (BLIP) interacts only weakly with Au nanoparticles (NPs). However, fusion of three histidine residues to BLIP (3H‐BLIP) resulted in a significant increase in the binding to the Au NPs, which further increased when the histidine tail was extended to six histidines (6H‐BLIP). Further increasing the number of His residues had no effect on the binding. A parallel study using continuous (111)‐textured Au surfaces and single‐crystalline, (111)‐oriented, Au islands by ellipsometry, FTIR, and localized surface plasmon resonance (LSPR) spectroscopy further confirmed the results, validating the broad applicability of Au NPs as model surfaces. Evaluating the binding of all other natural amino acid homotripeptides fused to BLIP (except Cys and Pro) showed that aromatic and positively‐charged residues bind preferentially to Au with respect to small aliphatic and negatively charged residues, and that the rate of association is related to the potency of binding. The binding of all fusions was irreversible. These findings were substantiated by SPR measurements of synthesized, free, soluble tripeptides using Au‐NP‐modified SPR chips. Here, however, the binding was reversible allowing for determination of binding affinities that correlate with the binding potencies of the related BLIP fusions. Competition assays performed between 3H‐BLIP and the histidine tripeptide (3 His) suggest that Au binding residues promote the adsorption of proteins on the surface, and by this facilitate the irreversible interaction of the polypeptide chain with Au. The binding of amino acids to Au was simulated by using a continuum solvent model, showing agreement with the experimental values. These results, together with the observed binding potencies and kinetics of the BLIP fusions and free peptides, suggest a binding mechanism that is markedly different from biological protein–protein interactions.  相似文献   

12.
A solid‐phase synthetic strategy was developed that uses modular building blocks to prepare symmetric oligo(ethylene glycol)‐terminated disulfides with a variety of lengths and terminal functionalities. The modular disulfides, composed of alkyl amino groups linked by an amide group to oligoethylene chains were used to generate self‐assembled monolayers (SAMs), which were characterised to determine their applicability for biomolecular applications. X‐ray photoelectron spectroscopy (XPS) of the SAMs obtained from these molecules demonstrated improved stability towards displacement by 16‐hexadecanethiol, while surface plasmon resonance (SPR) analyses of SAMs prepared with the hydroxy‐terminated oligoethylene disulfide showed equal resistance to non‐specific protein adsorption in comparison to 11‐mercaptoundecyl tri(ethylene glycol). SAMs made from these adsorbates were amenable to nanoscale patterning by scanning near‐field photolithography (SNP), facilitating the fabrication of nanopatterned, protein‐functionalised surfaces. Such SAMs may be further developed for bionanotechnology applications such as the fabrication of nanoscale biological arrays and sensor devices.  相似文献   

13.
Model surfaces representative of chromatographic stationary phases were developed by immobilising an homologous series (C2-C18) of n-alkylthiols, mixed monolayers of C4/C18 and thioalkanes with alcohol, carboxylic acid, amino and sulphonic acid terminal groups onto a flat, silver-coated glass surface using self-assembled monolayer (SAM) chemistry. The processes of adsorption and desorption of serum albumins onto the monolayer surfaces was monitored in real-time using surface plasmon resonance (SPR). Alkyl-terminated SAMs all showed a strong adsorption of bovine serum albumin which was largely independent of alkyl chain length, the ratio of mixed C4/C18 SAMs or the solution pH/ionic strength. The adsorption of human serum albumin to carboxylic and amine terminated SAMs was shown to be predominantly via non-electrostatic interactions (hydrophobic or hydrogen bonding). However, sulphonic acid terminated SAMs showed almost exclusively electrostatic interactions with human serum albumin. This preliminary work using self-assembled monolayer chemistry confirms the usefulness of well characterised SAMs surfaces for investigating protein adsorption and desorption onto/from model chromatography surfaces and gives some guidance for selecting appropriate functionalities to develop better surfaces for chromatography and electrophoresis.  相似文献   

14.
A study of protein resistance of oligo(ethylene glycol) (OEG), HS(CH2)11(OCH2CH2)nOH (n = 2, 4, and 6), self-assembled monolayers (SAMs) on Au(111) surfaces is presented here. Hydroxyl-terminated OEG-SAMs are chosen to avoid the hydrophobic effect observed with methyl-terminated OEG-SAMs, particularly at high packing densities. The structure of the OEG-SAM surfaces is controlled by adjusting the assembly solvent. These SAMs were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Protein adsorption on these surfaces was investigated by surface plasmon resonance (SPR). OEG-SAMs assembled from mixed ethanol and water solutions show higher packing density on gold than those from pure ethanol solution. For EG2OH- and EG4OH-SAMs, proteins (i.e., fibrinogen and lysozyme) adsorb more on the densely packed SAMs prepared from mixed ethanol and water solutions, while EG6OH-SAMs generally resist protein adsorption regardless of the assembly solvent used.  相似文献   

15.
Protein micro-/nanoarrays are becoming increasingly important in systematic approaches for the exploration of protein-protein interactions and dynamic protein networks, so there is a high demand for specific, generic, stable, uniform, and locally addressable protein immobilization on solid supports. Here we present multivalent metal-chelating thiols that are suitable for stable binding of histidine-tagged proteins on biocompatible self-assembled monolayers (SAMs). The architectures and physicochemical properties of these SAMs have been probed by various surface-sensitive techniques such as contact angle goniometry, ellipsometry, and infrared reflection-absorption spectroscopy. The specific molecular organization of proteins and protein complexes was demonstrated by surface plasmon resonance, confocal laser scanning, and atomic force microscopy. In contrast to the mono-NTA/His6 tag interaction, which has major drawbacks because of its low affinity and fast dissociation, drastically improved stability of protein binding by these multivalent chelator surfaces was observed. The immobilized histidine-tagged proteins are uniformly oriented and retain their function. At the same time, proteins can be removed from the chip surface under mild conditions (switchability). This new platform for switchable and oriented immobilization should assist proteome-wide wide analyses of protein-protein interactions as well as structural and single-molecule studies.  相似文献   

16.
A comparative analysis of the properties of two optical biosensor platforms: (1) the propagating surface plasmon resonance (SPR) sensor based on a planar, thin film gold surface and (2) the localized surface plasmon resonance (LSPR) sensor based on surface confined Ag nanoparticles fabricated by nanosphere lithography (NSL) are presented. The binding of Concanavalin A (ConA) to mannose-functionalized self-assembled monolayers (SAMs) was chosen to highlight the similarities and differences between the responses of the real-time angle shift SPR and wavelength shift LSPR biosensors. During the association phase in the real-time binding studies, both SPR and LSPR sensors exhibited qualitatively similar signal vs time curves. However, in the dissociation phase, the SPR sensor showed an approximately 5 times greater loss of signal than the LSPR sensor. A comprehensive set of nonspecific binding studies demonstrated that this signal difference was not the consequence of greater nonspecific binding to the LSPR sensor but rather a systematic function of the Ag nanoparticle's nanoscale structure. Ag nanoparticles with larger aspect ratios showed larger dissociation phase responses than those with smaller aspect ratios. A theoretical analysis based on finite element electrodynamics demonstrates that this results from the characteristic decay length of the electromagnetic fields surrounding Ag nanoparticles being of comparable dimensions to the ConA molecules. Finally, an elementary (2 x 1) multiplexed version of an LSPR carbohydrate sensing chip to probe the simultaneous binding of ConA to mannose and galactose-functionalized SAMs has been demonstrated.  相似文献   

17.
The transfer of functional molecules onto self-assembled monolayers (SAMs) by means of soft and scanning-probe lithographic techniques-microcontact printing (muCP) and dip-pen nanolithography (DPN), respectively-and the stability of the molecular patterns during competitive rinsing conditions were examined. A series of guests with different valencies were transferred onto beta-cyclodextrin- (beta-CD-) terminated SAMs and onto reference hydroxy-terminated SAMs. Although physical contact was sufficient to generate patterns on both types of SAMs, only molecular patterns of multivalent guests transferred onto the beta-CD SAMs were stable under the rinsing conditions that caused the removal of the same guests from the reference SAMs. The formation of kinetically stable molecular patterns by supramolecular DPN with a lateral resolution of 60 nm exemplifies the use of beta-CD-terminated SAMs as molecular printboards for the selective immobilization of printboard-compatible guests on the nanometer scale through the use of specific, multivalent supramolecular interactions. Electroless deposition of copper on the printboard was shown to occur selectively on the areas patterned with dendrimer-stabilized gold nanoparticles.  相似文献   

18.
糖基传感芯片是定量研究糖-蛋白相互作用的有力工具。传统糖基传感芯片的制备过程通常涉及糖基硫醇衍生物的合成,过程复杂且产率较低。本文采用脱氧氨基糖与二硫化碳温和条件下一步反应合成了一类新型糖基自组装功能分子-糖基二硫代氨基甲酸盐(DTC)化合物,进而在金衬底芯片上构筑了糖基传感功能膜。采用X射线光电子能谱(XPS)分析了该糖基传感功能膜的元素组成和元素化学环境;采用表面等离子体共振(SPR)和酶联凝集素分析(ELLA)技术定量分析了其在蛋白质水平的糖生物学活性。通过混合自组装的方法,制备了一系列表面葡萄糖密度不同的糖基传感功能膜并测定了伴刀豆球蛋白(Con A)吸附的热力学和动力学数据。通过调控表面密度,我们观察到了蛋白在葡萄糖表面吸附的多价态现象。当自组装溶液中葡萄糖-DTC摩尔分数低于1%时,Con A呈现单价态吸附,其解离平衡常数(Kd)为(39.10±0.12)μmol?L-1;当自组装溶液中葡萄糖-DTC摩尔分数高于2%时,Con A呈现多价态吸附,解离平衡常数降至(1.17±0.18)μmol?L-1。本文所发展的糖基自组装功能分子合成方法快速便捷、适用范围广,通过混合自组装可以实现蛋白结合价态的调控,是一种深入研究基于糖-蛋白相互作用的诸多生物过程的有效工具。  相似文献   

19.
The supramolecular self-assembled monolayers (SAMs) of C(60) by thiolated beta-cyclodextrin (CD) on gold surfaces were constructed for the first time using C(60) monoanion. The results indicate that monoanionic C(60) plays a crucial role in the formation of the C(60)-containing self-assembled monolayers. The generation of C(60) monoanion and the formation process of C(60) SAMs were monitored in-situ by UV-visible and near-IR spectroscopy. The resulting C(60) SAMs were fully characterized by spectroscopic ellipsometry (SE), cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. After the immobilization of C(60) by the SAMs of thiolated beta-CD, the film thickness increased by approximately 1 nm from 0.8 to 1.8 nm as determined by SE, demonstrating the formation of the supramolecular self-assembled monolayers of thiolated beta-CD/C(60). The new C(60) SAMs exhibited one quasi-reversible redox couple at half wave potential of -0.57 V vs SCE in aqueous solution containing 0.1 M KCl. The surface coverage of C(60) on the gold surfaces was estimated to be 1.1 x 10(-10) mol cm(-2). The XPS showed the assembly of C(60) over the thiolated beta-CD SAMs. The surface hydrophobicity increased greatly upon the formation of the C(60)-containing SAMs as analyzed by water contact angle measurements. The results are in agreement with the formation of 1:1 complex of C(60) and cyclodextrin on gold surfaces, though it also reveals some non-homogeneous features of the monolayers.  相似文献   

20.
One of the main problems in the development of immunosensors is to overcome the complexity of binding antibodies to the sensor surface. Most immobilizing methods lead to a random orientation of antibodies with a lower binding site density and immunoaffinity. In order to control the orientation of antibody immobilization, several resorc[4]arene derivatives were designed and synthesized. After the spectroscopic characterization of resorc[4]arene self-assembled monolayers (SAMs) onto gold films, the surface coverage and the orientation of insulin antibody (Ab-Ins) were assessed by a surface plasmon resonance (SPR) technique and compared with a random immobilization method. Experimental results combined with theoretical studies confirmed the dipole–dipole interaction as an important factor in antibody orientation and demonstrated the importance of the upper rim functionalization of resorcarenes. Accordingly, resorcarene 5 showed a major binding force towards Ab-Ins thanks to the H-bond interactions with the amine protein groups. Based on these findings, the resorcarene-based immunosensor is a powerful system with improved sensitivity providing new insight into sensor development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号