首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— When mammalian cells were exposed to visible-fluorescent light or near-UV light in the medium containing riboflavin and L-tryptophan, single-strand breaks appeared in their DNA. This did not occur if either riboflavin or tryptophan was omitted from the medium. The same effect was observed when cells were added to the pre-irradiated medium, indicating that a stable photoproduct was responsible. The induced DNA lesions were shown to be equally repairable in both excision proficient and defective (xeroderma pigmentosum) human cell lines. The active photoproduct formed was shown to be hydrogen peroxide. The possible relationship between these results and the near-UV induced killing of mammalian cells is discussed.  相似文献   

2.
Pretreatment of human cells with near UV radiation (UVA) in fluences exceeding 5 × 104 Jm−2 caused a decrease in the amount of the unscheduled DNA synthesis induced by far UV radiation (UVC). The DNA repair synthesis, as measured by the incorporation of [3H] -thymidine, is reduced by nearly a factor of 2 for a UVA radiation exposure of 1.5 × 105 Jm−2. Since solar UVA fluence rate is rather independent of latitude, this figure corresponds to a UVA exposure time of 50-60 min from noon sunlight in the summer time.  相似文献   

3.
Abstract— The induction of DNA single-strand breaks in normal human fibroblasts exposed to monochromatic wavelengths from 240–546 nm was measured by the alkaline elution assay. The cells were irradiated at 1°C to prevent both repair of induced breaks and formation of enzymatically induced breaks through excision repair. The cultures were also washed with and irradiated while suspended in phosphate buffered saline to prevent the formation of DNA damaging photoproducts from medium components. The action spectrum for DNA strand breakage was found to exhibit one peak at 265 nm, consistent with DNA absorption, and a second peak at 450 nm. The normalized action spectrum in the visible is similar to the normalized absorption spectrum for riboflavin, a known photosensitizing agent, implicating this molecule as the absorbing chromophore.  相似文献   

4.
Cultured human cells were treated with direct sunlight under conditions which minimised the hypertonic, hyperthermic and fixative effects of solar radiation. Sunlight produced similar levels of DNA strand breaks as equitoxic 254 nm UV in two fibroblast strains and a melanoma cell line, but DNA repair synthesis and inhibition of semiconservative DNA synthesis and of DNA chain elongation were significantly less for sunlight-exposed cells. DNA breaks induced by sunlight were removed more rapidly. Thus, the repair of solar damage differs considerably from 254 nm UV repair. Glass-filtered sunlight (> 320 nm) was not toxic to cells and did not induce repair synthesis but gave a low level of short-lived DNA breaks and some inhibition of DNA chain elongation; thymidine uptake was enhanced. Filtered sunlight slightly enhanced UV-induced repair synthesis and UV toxicity; photoreactivation of UV damage was not found. Attempts to transform human fibroblasts using sunlight, with or without phorbol ester, were unsuccessful.  相似文献   

5.
Abstract: Intact bacteriophage have been irradiated at 365 nm or at 254 nm and then analysed for DNA photoproducts or injected into their bacterial host to test susceptibility of the damage to both phage and host-cell mediated repair systems. Both thymine dimers and single-strand breaks are induced in the phage DNA by 365 nm radiation. The dimers appear to be the major lethal lesion (approximately 2 dimers per lethal event) in both repair deficient bacteriophage T4 and bacteriophage λ. after irradiation with either 254 nm or 365 nm radiation. Damage induced in T4 by either wavelength is equally susceptible to x -gene reactivation (repair sector approximately 0.5). v -gene reactivation acts on a larger fraction of the near-UV damage (repair sector of 0.82 at 365 nm as against 0.66 at 254 nm). The host-cell mediated photoreactivation system is only slightly less effective for near-UV damage but host-cell reactivation (as measured by comparing survival of phage λ. on a uvr+ and a uvr- host) is effective against a far smaller sector of near-UV damage (0.35) than far-UV damage (0.85). Weigle-reactivation (far-UV induced) of near-UV damage to phage λ is not observed. The results suggest that unless the near-UV damaged phage DNA is repaired immediately after injection. the lesions rapidly lose their susceptibility to repair with a consequent loss of activity of the phage particles.  相似文献   

6.
Abstract Using normal human fibroblasts we have determined the ability of far (254 nm), mid (310 nm) or near (365 nm) UV radiation to: (i) induce pyrimidine dimers (detected as UV endonuclease sensitive sites) and DNA single-strand breaks (detected in alkali); (ii) elicit excision repair, monitored as unscheduled DNA synthesis (UDS); and (iii) reduce colony-forming ability. Unscheduled DNA synthesis studies were also performed on dimer excision-defective xeroderma pigmentosum (XP) cells, and the survival studies were extended to include XP and Bloom's syndrome (BS) strains. UV-induced cell killing in normal, BS and XP cells was found to relate to an equivalent dimer load per genome after 254 or 310 nm exposure, whereas at 365 nm the lethal effects of non-dimer damage appeared to predominate. Lethality could not be correlated with DNA strand breakage at any wavelength. The two XP strains examined showed the same relative UDS repair deficiency at the two shorter wavelengths in keeping with a predominant role for pyrimidine dimer repair in the expression of UDS. However, UDS was not detected in 365 nm UV-irradiated normal and XP cells despite dimer induction; this effect was due to the inhibition of DNA repair functions since 365 nm UV-irradiated normal cells showed reduced capacity to perform UDS subsequent to challenge with 254 nm UV radiation.
In short, the near UV component of sunlight apparently induces biologically important non-dimer damage in human cells and inhibits DNA repair processes, two actions which should be considered when assessing the deleterious actions of solar UV.  相似文献   

7.
Abstract— In stationary phase, strains of Escherichia coli deficient in excision (B/r Her) or recombination repair (K.12 AB2463) were more sensitive than a repair proficient strain (B/r) to monochromatic near-ultraviolet (365 nm) and visible (460 nm) radiations. The relative increase in sensitivity of mutants deficient in excision or recombination repair, in comparision to the wildtype, was less at 365 nm than at 254 nm. However, a strain deficient in both excision and recombination repair (K12 AB2480) showed a large, almost equal, increase in sensitivity over mutants deficient in either excision or recombination repair at 365 nm and 254 nm. All strains tested were highly resistant to 650 nm radiation. Action spectra for lethality of strains B/r and B/r Her in stationary phase reveal small peaks or shoulders in the 330–340, 400–410 and 490–510 nm wavelength ranges. The presence of 5μg/ml acriflavine (an inhibitor of repair) in the plating medium greatly increased the sensitivity of strain B/r to radiation at 254, 365 and 460 nm, while strains E. coli B/r Her and K12 AB2463 were sensitized by small amounts. At each of the wavelengths tested, acriflavine in the plating medium had at most a small effect on E. coli K.12 AB2480. Acriflavine failed to sensitize any strain tested at 650 nm. Evidence supports the interpretation that lesions induced in DNA by 365 nm and 460 nm radiations play the major role in the inactivation of E. coli by these wavelengths. Single-strand breaks (or alkali-labile bonds), but not pyrimidine dimers are candidates for the lethal DNA lesions in uvrA and repair proficient strains. At high fluences lethality may be enhanced by damage to the excision and recombination repair systems.  相似文献   

8.
The gene mutation nur has been shown specifically to sensitize Escherichia coli stationary phase cells to inactivation by broad spectrum near-UV (NUV) radiation. In the work reported here, E. coli strains RT1. RT2, RT3, and RT4, carrying the 4 possible combinations of recA1, recA+, nur , and nur+ , were exposed to monochromatic NUV (365 nm). The strains carrying the nur allele (RT1 and RT2) were more sensitive to inactivation by this wavelength and exhibited considerably more single strand break's (SSB's) than the strains carrying the nur+ allele (RT3 and RT4). As predicted, following X-irradiation the strains carrying the recA1 allele (RT1 and RT3) were more sensitive than the recA+ strains (RT2 and RT4). We conclude that the enhanced SSB's observed in strains RT1 and RT2 following monochromatic NUV irradiation correlated with the nur mutation and are unrelated to the recA1 mutation.  相似文献   

9.
The induction of single-strand breaks (SSB) by two quantum processes in DNA is well established. We now report that biphotonic processes result in double-strand breaks (DSB) as well. pUC19 and bacteriophage M13 RF DNA were irradiated using an excimer laser (248 nm) at intensities of 10(7), 10(9), 10(10) and 10(11) W/m2 and doses up to 30 kJ/m2. The proportion of DNA as supercoil, open circular, linear and short fragments was determined by gel electrophoresis. Linear molecules were noted at fluences where supercoiled DNA was still present. The random occurrence of independent SSB in proximity to each other on opposite strands (producing linear DNA) implies introduction of numerous SSB per molecule in the sample. If so, supercoiled DNA that has sustained no SSB should not be observed. A model accounting for the amounts of supercoiled, open circular, linear and shorter fragments of DNA due to SSB, DSB and Scissions (opposition of two independently occurring SSB producing an apparent DSB) was developed, our experimental data and those of others were fit to the model, and quantum yields determined for SSB and DSB formation at each intensity. Results showed that high intensity laser radiation caused an increase in the quantum yields for both SSB and DSB formation. The mechanism of DSB formation is unknown, and may be due to simultaneous cleavage of both strands in one biphotonic event or the biased introduction of an SSB opposite a preexisting SSB, requiring two biphotonic events.  相似文献   

10.
Abstract— Reductone (HOCH2COCHO), a keto-aldehyde produced by thermal degradation of some sugars, at alkaline pHs, blocks the excision repair of DNA lesions in uv-irradiated wild type Escherichia coli. This probably occurs as a result of inhibition of the exonucleolytic activity of DNA polymerase I. In addition, reductone alone induces DNA single-strand breaks. Repair of this damage is mainly dependent on the polA gene products.  相似文献   

11.
The effect of pretreatment with vitamin E on cytotoxicity, DNA single strand breaks, and chromosomal aberrations as well as on mutation induced by ultraviolet-B light (UV-B) was investigated in Chinese hamster V-79 cells. Cellular pretreatment with non-toxic levels of 25 microM alpha-tocopherol succinate (vitamin E) for 24 h prior to exposure resulted in a 10-fold increase in cellular levels of alpha-tocopherol. Using a colony-forming assay, this pretreatment decreased the cytotoxicity of UV-B light. However, alkaline elution assays demonstrated that pretreatment with vitamin E did not affect the number of DNA single strand breaks caused by UV-B light. In addition, UV-B exposure produced a dose-dependent induction of chromosomal aberrations and mutations at the HGPRT locus, and neither of these actions of UV-B was influenced by pretreatment with the vitamin. These results suggest that vitamin E protects cells from UV-B-induced cytotoxicity, possibly through its ability to scavenge free radicals. The results also suggest that the extent of genotoxicity induced by UV-B light may not correlate directly with the cytotoxic action of this wavelength region in sunlight.  相似文献   

12.
Intracellular properties of three photosensitizers relevant to photodynamic cancer therapy were compared using cultured human NHIK 3025 cells. When taken up in the cells, the hydrophilic photosensitizer aluminum phthalocyanine tetra sulfonate required about 10 times more quanta of light absorbed per cell to kill 90% of the cells than did the hydrophobic dyes Photofrin II and tetra(3-hydroxyphenyl)porphyrin. In spite of this, the phthalocyanine molecule was the most efficient dye per quantum of excitation light, since the extinction coefficient of the phthalocyanine is more than 10 times higher than that of the two hydrophobic photosensitizers at therapeutic wavelengths. The two hydrophobic dyes had significantly higher fluorescence quantum yields when taken up by cells than when bound to human plasma or human serum albumin, whereas the opposite was true for the hydrophilic phthalocyanine dye--suggesting intracellular aggregation. Finally, the potential genetic toxicities of the drugs in the form of DNA strand breaks were compared. The aluminum phthalocyanine tetra sulfonate photosensitized more DNA strand breaks than did Photofrin II and tetra(3-hydroxyphenyl)porphyrin when compared at the same level of cell survival.  相似文献   

13.
Abstract— The azide analog of ethidium was mixed with human lymphocytes and when photolyzed with visible light provoked repair synthesis as shown by incorporation of tritiated thymidine in the presence of hydroxyurea. The use of photolyzed drug, or incubation of drug-cell mixtures in the dark was without effect. These experiments should prove useful in targeting drug action sites and in studying the details of DNA repair.  相似文献   

14.
Abstract— The coal-derived carcinogen 7,12-dimethylbenz(a)anthracene (DMBA), added to cultures of V79 Chinese hamster, C3H mouse 10T1/ 2 , and human HeLa cells, enhances photolethality induced by the sunlight-simulating emission from Westinghouse Sun Lamps (- 29˜100 nm) but only in the presence of O 2 . Treatment of cells with DMBA after irradiation is without lethal effect; the endoperoxide of DMBA is ineffective both before as well as after irradiation, and DMBA incubation before far-UV exposure (254 nm) is protective. Cells rendered photosensitive by incubation with DMBA rapidly lose their sensitivity (in < 10 min, 37°C) if incubated in a DMBA-free solution containing serum, but maintain their sensitivity at least for several hours if a serum-free solution is used. Although DMBA enhances light-induced killing of cells in all phases of the cycle, those undergoing DNA syntheses are preferentially sensitized. The data support photodynamic lethality due to one or both of the following: (1) the reaction with DNA of either DMBA radicals followed by oxidation, or DMBA-produced singlet oxygen; or (2) the peroxidation of lysosomal membranes followed by the release of hydrolases including DNAses. As a model system of the combined effects of a fossil-fuel derived polycyclic aromatic hydrocarbon and sunlight, the results with DMBA + near-UV are discussed in the context of altered cell properties (e.g. neoplastic transformation) in sublethally affected cells.  相似文献   

15.
Abstract— Peripheral blood mononuclear cells were irradiated with UVA, UVB or UVC. The highest exposure dose used in each waveband reduced the number of viable cells to one-third the control cell population after 3 days in culture. Exposure of these cells to half as much UV from each waveband resulted in an equivalent or greater degree of inhibition of their proliferative response to mitogen as measured by lymphoblast transformation, [3H]-thymidine uptake and viable cell number on day 3 in culture. The pattern of inhibition was distinct for each waveband. UVA interfered with blastogenesis on the first 2 days of culture at doses which had considerably less effect on viable cell number. UVA also depressed the first round of DNA synthesis, which was detectable on the second day of culture. By day 3 in culture, however, the UVA-induced reduction in both the number of lymphoblasts and the uptake of [3H]-thymidine was a direct reflection of reduced numbers of viable cells. UVB did not interfere with blastogenesis in mitogen-stimulated cultures to the same degree as did UVA. Only the highest dose of UVB depressed blast transformation more than viable cell number on day 1; by day 2 lower doses were also inhibitory. In contrast UVC had little effect on blastogenesis at any time; a reduced number of lymphoblasts observed on days 2 and 3 in culture was a direct reflection of a reduced number of viable cells rather than a reduced percent of these cells undergoing blast transformation. As with UVA-irradiated, mitogen-stimulated cells, [3H]-thymidine uptake was also depressed in both UVB and UVC irradiated, mitogen-stimulated cells on day 2. However, only UVB continued to depress DNA synthesis more than viable cell number after 3 days of culture. These results suggest that UVA, UVB and UVC may interfere with any one or more of the signals involved in the response to mitogen, be they the recognition of mitogen by T cells or accessory cells, the transformation of lymphocytes into lymphoblasts or the activation of lymphoblasts to synthesize DNA.  相似文献   

16.
Riboflavin-sensitized photodynamic modification of collagen led to significant formation of cross-linked molecules. Sodium azide or l,4-diazabicyclo(2,2,2)octane, which are known to be singlet oxygen quenchers, and catalase could not inhibit the modification. Surprisingly, the collagen modification was accelerated in the presence of superoxide dismutase. The aggregation was accompanied by the loss of tyrosine and histidine residues in the collagen. An inhibitory effect of dissolved oxygen on the modification of collagen was observed. Similarly, the loss of tyrosine residues in the irradiated collagen was inhibited in the presence of dissolved oxygen. Dityrosine formation was also observed with the loss of tyrosine. These results indicate that photodynamic modification of tyrosine probably contributes to the riboflavin-sensitized cross-linking of collagen through the formation of dityrosine.  相似文献   

17.
SITES OF PHOTODYNAMICALLY INDUCED DNA REPAIR IN HUMAN CELLS   总被引:1,自引:0,他引:1  
Abstract Human REH cells were incubated with the photosensitizers meso -tetra(4-sulfonatophenyl)porphyrin (TSPP=TPPS4) or meso -tetra(3-hydroxyphenyl)porphyrin (3-THPP). The relatively hydrophilic TSPP was partly found in the cytoplasm and partly in the nuclei, whereas the lipophilic 3-THPP was found apparently in membranes and not inside the nuclei. After illumination, sites of DNA repair were labeled by means of a monoclonal antibody against proliferating cell nuclear antigen (PCNA) bound in the nuclei. The amount of bound PCNA in non-S-phase cells was proportional to the light dose. The bound PCNA was homogeneously distributed in the nuclei 0.5 h after photodynamic treatment (PDT) with TSPP. In contrast, for cells given PDT with 3-THPP, the periphery of the nuclei was selectively labeled, indicating that the initial DNA damage was localized close to the sensitizer at the nuclear membrane.  相似文献   

18.
Abstract— UV-induced alkaline labile viral DNA damage was detected following irradiation of adenovirus type 2 and found to be repaired following the infection of human KB cells. Human adenovirus type 2 was irradiated with various doses of UV and subsequently used to infect human KB cells in tissue culture at approximately 2 × 103 particles per cell. Before, and at various times after infection, the viral DNA was examined on alkaline sucrose gradients. Irradiated free virus DNA showed a dose dependent decrease in molecular weight compared to unirradiated virus DNA, indicating the presence of UV-induced alkaline labile lesions. Furthermore, an increase in the molecular weight of the irradiated virus DNA was found after infection indicating that alkaline labile lesions were removed from the viral DNA by a host mediated repair mechanism. After infection, the molecular weight of the irradiated virus DNA reached a value similar to that of unirradiated virus DNA for all the UV doses studied.  相似文献   

19.
The radiation response of stationary-phase cells of Escherichia coli strains RT4 (nur+) and RT2 (nur) was measured at 6 selected wavelengths between 254 and 405 ran. The relative response of the nur+. and nur strains was almost the same at 254 and 290 nm. However, the differential sensitivity of the RT4 and RT2 strains (ratio of the initial F37 values of the nur+ to the nur strains) was 2.7 at 313 nm, 3.2 at 334 nm, 3.1 at 365 nm, and 2.3 at 405 nm. Thus, the fluence enhancing effect of the nur genotype extends over the wavelength range of approximately 300 to 420 nm. The substantial effect of nur at 313 nm strongly suggests that the increased sensitivity of the nur strain is the consequence of a repair deficiency that reduces the efficiency of mending DNA lesions produced by UVA (320–400 nm) and UVB (290–320 nm), but not UVC (200–290 nm) radiation.  相似文献   

20.
A covalently closed, circular, supercoiled plasmid was exposed to singlet oxygen by a separated-surface sensitizer. For each exposure, the quantity of single oxygen entering the DNA target solution was estimated by its oxidation of histidine. After singlet oxygen exposure, some DNA samples were treated to disclose occult lesions. Agarose gel electrophoresis was then used to resolve the unrelaxed supercoils from the relaxed circular and linear species, and all bands were quantitated fluorometrically. Exposure of supercoiled plasmid DNA to singlet oxygen induced frank DNA strand breaks, alkali-labile sites (pH 12.5, 90 degrees C, 30 min), and piperidine-labile sites (0.4 M, 60 degrees C, 30 min), all in a dose-dependent manner. Yields of alkali-labile and piperidine-labile sites ranged from one to four times the frank strand break yield. Replacement of buffered H2O by buffered D2O as the DNA solvent for singlet oxygen exposures increased DNA lesion yields by a factor of 2.6 (averaged over lesion classes). Our data for the detection of frank strand breaks is at variance with published results from studies in which singlet oxygen was derived from a thermolabile endoperoxide dissolved in the DNA solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号