首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The present paper investigates the steady-state periodic response of an axially moving viscoelastic beam in the supercritical speed range. The straight equilibrium configuration bifurcates in multiple equilibrium positions in the supercritical regime. It is assumed that the excitation of the forced vibration is spatially uniform and temporally harmonic. Under the quasi-static stretch assumption, a nonlinear integro-partial-differential equation governs the transverse motion of the axially moving beam. The equation is cast in the standard form of continuous gyroscopic systems via introducing a coordinate transform for non-trivial equilibrium configuration. For a beam constituted by the Kelvin model, the primary resonance is analyzed via the Galerkin method under the simply supported boundary conditions. Based on the Galerkin truncation, the finite difference schemes are developed to verify the results via the method of multiple scales. Numerical simulations demonstrate that the steady-state periodic responses exist in the transverse vibration and a resonance with a softening-type behavior occurs if the external load frequency approaches the linear natural frequency in the supercritical regime. The effects of the viscoelastic damping, external excitation amplitude, and nonlinearity on the steady-state response amplitude for the first mode are illustrated.  相似文献   

2.
The acoustic field in a resonator filled with a cubically nonlinear medium is investigated. The field is represented as a linear superposition of two strongly distorted counterpropagating waves. Unlike the case of a quadratically nonlinear medium, the counterpropagating waves in a cubically nonlinear medium are coupled through their mean (over a period) intensities. Free and forced standing waves are considered. Profiles of discontinuous oscillations containing compression and expansion shock fronts are constructed. Resonance curves, which represent the dependences of the mean field intensity on the difference between the boundary oscillation frequency and the frequency of one of the resonator modes, are calculated. The structure of the profiles of strongly distorted “forced” waves is analyzed. It is shown that discontinuities are formed only when the difference between the mean intensity and the detuning takes certain negative values. The discontinuities correspond to the jumps between different solutions to a nonlinear integro-differential equation, which, in the case of small dissipation, degenerates into a third-degree algebraic equation with an undetermined coefficient. The dependence of the intensity of discontinuous standing waves on the frequency of oscillations of the resonator boundary is determined. A nonlinear saturation is revealed: at a very large amplitude of the resonator wall oscillations, the field intensity in the resonator ceases depending on the amplitude and cannot exceed a certain limiting value, which is determined by the nonlinear attenuation at the shock fronts. This intensity maximum is reached when the frequency smoothly increases above the linear resonance. A hysteresis arises, and a bistability takes place, as in the case of a concentrated system at a nonlinear resonance.  相似文献   

3.
The paper proposes a new graphene resonator circuit which operates on the principle of a self-oscillator and has no drawbacks typical of nanoresonators as mass detectors and associated with their law quality factor, eigenfrequency errors (measurements from resonance curves), and dependence of quench frequency on oscillation frequency (curves with quenching for nonlinear systems). The proposed circuit represents a self-oscillator comprising an amplifier, a graphene resonator, and a positive feedback loop with a graphene oscillation transducer, and its major advantage is in self-tuning to resonance frequency at slowly varying resonator parameters, compared to oscillation periods. The graphene layer with a conducting substrate beneath it forms a capacitor which is recharged by a dc voltage source as its capacitance varies due to graphene deformation, and the recharge current is an oscillation- dependent signal transmitted from the transducer to the amplifier input. The graphene layer is placed in a magnetic field and is deformed when a current from the amplifier output is passed through. By properly choosing the magnetic field direction and the amplifier gain, it is possible to provide swinging oscillation whose amplitude is limited by the amplifier nonlinearity. For the proposed system we present an electromechanical model, dimensionless equations of motion, and numerical data demonstrating the generation of steady-state oscillations with eigenfrequency. Also presented is an analysis showing that the system can have only one limit cycle and that this cycle is always stable. The proposed resonator circuit can be used as a mass detector which determines the added mass from a change in self-oscillation frequency.  相似文献   

4.
This review is dedicated to resonator oscillations under conditions of a strongly expressed nonlinearity under which steep shock fronts emerge in the wave profiles. Models and approximated methods for their analysis for quadratic and cubic nonlinear media are examined, as well as for nonlinearity when taking into account the mobility of boundaries. The forms of the profiles are calculated both for a steady-state oscillation regime and during the establishment of the profiles. Dissipative losses and selective losses at specially chosen frequencies are considered. An analysis of nonlinear Q-factor is given. The possibility of increasing the acoustic energy accumulated in the cavity of the resonator is discussed. Special attention is given to various physical phenomena that are exhibited only in nonlinear acoustic fields.  相似文献   

5.
The impedance method is used to determine the electric impedance of a resonator. The amplitude-frequency response of a one-dimensional liquid-filled ultrasonic resonator is calculated by directly solving the wave equations and piezoelectric effect equations under the corresponding boundary conditions. An analysis of the amplitude-frequency response shows that the simple analytical expression obtained from the aforementioned solution is in good agreement with experimental data. An anomalous variation of the electric current in the radiating piezoelectric plate versus the excitation frequency is theoretically revealed near the high-Q resonance peaks. This effect is confirmed experimentally. It gives rise to errors in the measured absorption coefficient and multiply broadens the resonance peaks when the measurements are performed near the resonance frequencies of the piezoelectric plates.  相似文献   

6.
The study of nonlinear frequency mixing for acoustic standing waves in a resonator cavity is presented. Two high frequencies are mixed in a highly nonlinear bubbly liquid filled cavity that is resonant at the difference frequency. The analysis is carried out through numerical experiments, and both linear and nonlinear regimes are compared. The results show highly efficient generation of the difference frequency at high excitation amplitude. The large acoustic nonlinearity of the bubbly liquid that is responsible for the strong difference-frequency resonance also induces significant enhancement of the parametric frequency mixing effect to generate second harmonic of the difference frequency.  相似文献   

7.
The two-dimensional nonlinear acoustic field of eleven exponential shaped resonators was simulated with a computational fluid dynamics software Fluent.The influence of driving frequency and driving intensity on pressure in resonator as well as its natural frequency was investigated.The relationship between natural frequency and theoretical calculation resonance frequency was also explored.It is found that beating phenomena can be observed in the resonator when the driving frequency deviates from the natural frequency.Moreover,the natural frequency of resonator increases with the increasing of driving intensity,which shows a hard spring effect.However,the driving intensity plays little effect on natural frequency and the natural frequencies are smaller than the theoretical calculation values in any driving intensity.Meanwhile,a formula between the natural frequency and its first-order resonance frequency from theoretical calculation was obtained by linear fitting for all these exponential shaped resonators under consideration.It is also found that the highest pressure amplitude and highest pressure ratio can be obtained from the exponential shaped resonator of m=2.8 under the same driving intensity.Moreover,the relation between natural frequency and the theoretical resonance frequency for m=2.8-tube is slightly different from other tubes in consideration.  相似文献   

8.
This paper describes the dynamic behaviour of a coupled system which includes a nonlinear hardening system driven harmonically by a shaker. The shaker is modelled as a linear single degree-of-freedom system and the nonlinear system under test is modelled as a hardening Duffing oscillator. The mass of the nonlinear system is much less than the moving mass of the shaker and thus the nonlinear system has little effect on the shaker dynamics. The nonlinearity is due to the geometric configuration consisting of a mass suspended on four springs, which incline as they are extended. Following experimental validation, the model is used to explore the dynamic behaviour of the system under a range of different conditions. Of particular interest is the situation when the linear natural frequency of the nonlinear system is less than the natural frequency of the shaker such that the frequency response curve of the nonlinear system bends to higher frequencies and thus interacts with the resonance frequency of the shaker. It is found that for some values of the system parameters a complicated frequency response curve for the nonlinear system can occur; closed detached curves can appear as a part of the overall amplitude-frequency response. These detached curves can lie outside or inside the main resonance curve, and a physical explanation for their occurrence is given.  相似文献   

9.
The effect of a radially nonuniform steady-state liquid flow in the outlet of a centrifugal pump on the excitation of sound waves in it by a source of oscillations positioned in the inlet cross section of the impeller is analyzed. It is shown that a change in the velocity of the potential rotation of the liquid in the outlet almost does not affect the resonance frequency values in the frequency range of sound oscillations under consideration (the difference is less than 2%). A similar change (an increase) in the velocity of the solid-state rotation of the flow leads to a small (from 2 to 10%) increase in the resonance frequencies within the same frequency range.  相似文献   

10.
A general vibrational model of a continuous system with arbitrary linear and cubic operators is considered. Approximate analytical solutions are found using the method of multiple scales. The primary resonances of the external excitation and three-to-one internal resonances between two arbitrary natural frequencies are treated. The amplitude and phase modulation equations are derived. The steady-state solutions and their stability are discussed. The solution algorithm is applied to two specific problems: (1) axially moving Euler-Bernoulli beam, and (2) axially moving viscoelastic beam.  相似文献   

11.
Nonlinear wave processes in an acoustic rod resonator with hysteretic nonlinearity under harmonic excitation are studied. The characteristics of longitudinal nonlinear modes of the resonator with hard and soft boundaries (amplitude-dependent loss, shifts of resonance frequencies, and amplitudes of the second and third harmonics) are determined. The comparison of the theoretical and experimental dependences of nonlinear acoustic effects in a resonator that is made of annealed polycrystalline copper is used to determine the parameters of the hysteretic nonlinearity.  相似文献   

12.
研究了谐振管一端受活塞声源激励,另一端刚性封闭条件下,管道形状对热声发动机谐振管内部非线性声场的影响。基于流体力学基本方程建立了渐变截面谐振管内一维非线性声场的模型,考虑了黏性耗散及非线性效应的影响。利用伽辽金法数值求解了该模型的速度势方程,分析了谐振管形状、活塞振动速度及激励频率对管内声场的影响。将双曲形、指数形、锥形、正弦形等四种变截面谐振管内的非线性声场与圆柱形直管的情况进行了比较。结果反映了谐振管内声场的压力波动受活塞振动速度及谐振管形状的影响;显示了当活塞振动幅度较大时,谐振管内出现的波形畸变、频率曲线偏移、共振频率滞后等非线性现象;揭示了变截面谐振管在抑制管内的高阶谐波及提高压比等方面的优越性。   相似文献   

13.
采用计算流体力学软件Fluent模拟研究了11种不同形状参数的指数型热声谐振管内二维非线性声场特性,分析了驱动频率和驱动强度对管内声压演化过程及固有频率的影响,并探索了指数管的固有频率与理论计算谐频之间的关系.研究发现:当驱动频率偏离谐振管固有频率时,管内将出现明显的"拍"现象;指数管的固有频率随驱动强度的增加而增加,呈现硬弹簧效应,但驱动强度对固有频率的影响较小并且在任何驱动下指数管的固有频率均小于理论计算谐频.针对所研究的指数型管,获得了其固有频率与理论计算谐频之间的关系式.结果表明,相同驱动下,形状参数m值约等于2.8的指数管所能获得的压力幅值及压比最大,且m=2.8指数管的固有频率与理论计算谐频之间的关系式与其他管型略有不同.   相似文献   

14.
An analysis of the linear and nonlinear vibration response and stability of a pre-stretched hyperelastic rectangular membrane under harmonic lateral pressure and finite initial deformations is presented in this paper. Geometric nonlinearity due to finite deformations and material nonlinearity associated with the hyperelastic constitutive law are taken into account. The membrane is assumed to be made of an isotropic, homogeneous, and incompressible Mooney–Rivlin material. The results for a neo-Hookean material are obtained as a particular case and a comparison of these two constitutive models is carried out. First, the exact solution of the membrane under a biaxial stretch is obtained, being this initial stress state responsible for the membrane stiffness. The equations of motion of the pre-stretched membrane are then derived. From the linearized equations, the natural frequencies and mode shapes of the membrane are analytically obtained for both materials. The natural modes are then used to approximate the nonlinear deformation field using the Galerkin method. A detailed parametric analysis shows the strong influence of the stretching ratios and material parameters on the linear and nonlinear oscillations of the membrane. Frequency–amplitude relations, resonance curves, and bifurcation diagrams, are used to illustrate the nonlinear dynamics of the membrane. The present results are compared favorably with the results evaluated for the same membrane using a nonlinear finite element formulation.  相似文献   

15.
The transmission of shear one-dimensional periodic perturbations through a layer of a nonlinearly elastic medium under the conditions close to resonance is considered. The layer separates two half-spaces consisting of a medium that is much more rigid, as compared to the medium in the layer. A system of differential equations is obtained for describing the slow variations in the amplitude and waveform of nonlinear strain and stress oscillations at the fixed boundary that occur because of the nonlinear properties of the medium while the other boundary performs arbitrary periodic motions in its plane. The period of these oscillations is close to the period of natural oscillations of the layer. It is shown that, in addition to continuous strain variations at the fixed boundary, strain variations containing strong discontinuities are possible. Relations at the discontinuities are obtained. The analogy between the equations derived for the case under study and the equations describing the propagation of strain waves in a homogeneous anisotropic elastic medium is pointed out.  相似文献   

16.
Shear waves with finite amplitude in a one-dimensional resonator in the form of a layer of a rubber-like medium with a rigid plate of finite mass at the upper surface of the layer are investigated. The lower boundary of the layer oscillates according to a harmonic law with a preset acceleration. The equation of motion for particles in a resonator is determined using a model of a medium with a single relaxation time and cubical dependence of the shear modulus on deformation. The amplitude and form of shear waves in a resonator are calculated numerically by the finite difference method at shifted grids. Resonance curves are obtained at different acceleration amplitudes at the lower boundary of a layer. It is demonstrated that, as the oscillation amplitude in the resonator grows, the value of the resonance frequency increases and the shape of the resonance curve becomes asymmetrical. At sufficiently large amplitudes, a bistability region is observed. Measurements were conducted with a resonator, where a layer with the thickness of 15 mm was manufactured of a rubber-like polymer called plastisol. The shear modulus of the polymer at small deformations and the nonlinearity coefficient were determined according to the experimental dependence of mechanical stress on shear deformation. Oscillation amplitudes in the resonator attained values when the maximum shear deformations in the layer were 0.4–0.6, which provided an opportunity to observe nonlinear effects. Measured dependences of the resonance frequency on the oscillation amplitude corresponded to the calculated ones that were obtained at a smaller value of the nonlinear coefficient.  相似文献   

17.
18.
Results of a computer simulation of an impedance absorber for longitudinal plane elastic waves incident on a free boundary of a rigid body are presented. The absorbing elements are mechanical resonators (of the elasticity-mass type) with two degrees of freedom and, hence, with two resonance frequencies, which correspond to the normal and tangential oscillations of the resonator. Formulas for calculating the absorber efficiency as a function of frequency and angle of incidence of longitudinal waves are derived with allowance for the absorption of both longitudinal and shear waves at their reflection from the absorbing surface. These formulas are used to solve the problem of synthesizing optimal absorbers that are characterized by the maximal average value of the absorption coefficient in preset ranges of frequency and angle of incidence. The possibility of increasing this average value by increasing the loss coefficient of the resonators or by using two types of resonators with different resonance frequencies is studied. The results of the calculations are presented in graphic form.  相似文献   

19.
20.
Galerkin methods for natural frequencies of high-speed axially moving beams   总被引:1,自引:0,他引:1  
In this paper, natural frequencies of planar vibration of axially moving beams are numerically investigated in the supercritical ranges. In the supercritical transport speed regime, the straight equilibrium configuration becomes unstable and bifurcate in multiple equilibrium positions. The governing equations of coupled planar is reduced to two nonlinear models of transverse vibration. For motion about each bifurcated solution, those nonlinear equations are cast in the standard form of continuous gyroscopic systems by introducing a coordinate transform. The natural frequencies are investigated for the beams via the Galerkin method to truncate the corresponding governing equations without nonlinear parts into an infinite set of ordinary-differential equations under the simple support boundary. Numerical results indicate that the nonlinear coefficient has little effects on the natural frequency, and the three models predict qualitatively the same tendencies of the natural frequencies with the changing parameters and the integro-partial-differential equation yields results quantitatively closer to those of the coupled equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号