首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
受有两级空洞损伤时韧性材料的力学行为   总被引:1,自引:0,他引:1  
本文利用大应变有限元方法研究了两级空洞对韧性材料的损伤作用.模型是以轴对称圆柱基体作为胞元,内含一初始的球型空洞.基体内的应力/应变随胞元外载的增大而达到临界状态,从而在围绕初级空洞的基体内将萌生次级空洞.后者是由空单元实现的.两级空洞的交互作用被证明将促进材料中的空洞化现象从而加速损伤并导至材料的总体弹性模量值在临近破断时急剧下降.  相似文献   

2.
基于尺度相关的应变梯度塑性SG理论,对含孔洞的球形体胞模型进行了解析分析,得到了在基体梯度塑性环境下球形孔洞的演化规律,给出了弹塑性孔洞材料的宏观屈服面方程.与现有的基于尺度无关塑性理论的Curson模型相比,该模型考虑了基体材料的特征长度l与孔洞半径α之比λ(λ=l/α)对多孔材料宏观屈服面和孔洞演化规律的影响.当不计基体材料的塑性梯度效应和硬化效应时,该模型能退化到经典的Curson模型.  相似文献   

3.
光滑拉伸试件中不同初始形状孔洞长大的有限元模拟   总被引:2,自引:0,他引:2  
本文对具有不同硬化指数(n=0.05,n=0.1,n=0.2)的幂硬化材料的光滑拉伸试样的拉伸变形过程进行了有限元模拟,通过有限元计算和经Bridgman修正分别得到了试样变形过程中心部应力三维度随应变的变化情况;在此基础上运用控制体胞宏观应力三维度的方法,对含不同初始形状孔洞的体胞模型进行了有限元分析,计算结果表明:(1)孔洞初始形状和材料硬化特性对试样的拉伸破坏过程有重要影响;(2)Bridg  相似文献   

4.
主要研究压力敏感材料中含内压的空洞长大,如页岩或者高分子材料。采用数值方法研究含内压空洞的对称和非对称球形和柱形胞元的宏观力学行为。结果表明,压力敏感性及其空洞内压将极大影响空洞的形核与长大。在球形胞元情形中未出现柱形胞元的单轴拉伸现象。将胞元有限变形的数值计算结果与基于近期提出的考虑压力敏感材料中空洞长大的塑形力学模型的分析结果进行了对比。  相似文献   

5.
本文首先将以前所得到的关于两个轴对称塑性平面应力问题(薄圆环和旋转盘)的有关方程和计算结果作了一个简单的叙述.这些计算结果是根据两种不同硬化特性的材料和一种理想塑性材料的应力应变曲线在不同负荷下计算得到的.这些结果指出这三种不同材料的应力应变曲线和负荷对于这两个问题的主应力比值和比例应变的影响很小,而对于比例应力的影响则很大.之后,分析了二维的塑性平面应力问题的方程;这些方程考虑了大应变,但不包括体积力(body force).分析这些方程中的包括材料应力应变曲线项和载荷数项的结果,认为假若在边界上的主应力的比值和比例应变不变,则材料的应力应变曲线和载荷对于主应力比值和比例应变的分布的影响可能不大,而对于比例应力的影响则很大.这种边界条件在实际问题中的普通加减下,满足的可能想是很大的.薄圆环和旋转盘的边界条件及所得的结果和这分析的结果是完全一致的.从这些结果并可提出一个简单而相当准确的近似解,最后并将本文所得的结果和依留辛(Ильюшии)的理论——关于小应变下三维问题形变理论的应用条件——作了比较.  相似文献   

6.
主要研究压力敏感材料中含内压的空洞长大,如页岩或者高分子材料。采用数值方法研究含内压空洞的对称和非对称球形和柱形胞元的宏观力学行为。结果表明,压力敏感性及其空洞内压将极大影响空洞的形核与长大。在球形胞元情形中未出现柱形胞元的单轴拉伸现象。将胞元有限变形的数值计算结果与基于近期提出的考虑压力敏感材料中空洞长大的塑形力学模型的分析结果进行了对比。  相似文献   

7.
采用弹牯塑性力学模型,对蠕变硬化材料中平面应变扩展裂纹尖端场进行了渐近分析.假设人工粘性系数与等效塑性应变率的幂次成反比,通过量级匹配表明应力和应变均具有幂奇异性,奇异性指数由粘性系数中等效塑性应变率的幂指数唯一确定.通过数值计算讨论了Ⅱ型准静态扩展裂纹尖端场的分区构造以及裂纹尖端应力和应变场的特性随各材料参数的变化规律,结果表明裂尖场由材料的粘性和塑性共同主导.当硬化系数为零时裂尖场可退化为相应的HR场.  相似文献   

8.
毛润生  黄争鸣 《力学季刊》2020,41(4):622-632
本文用广义胞元法结合应力集中系数模型,从细观、宏观力学结合的角度,预测了弱界面复合材料偏轴拉伸强度值.用广义胞元法/高精度广义胞元法计算复合材料开裂前和开裂后的应力场,引入基体应力集中系数以得到基体真实应力.在计算真实应力时根据宏观试验现象考量是否对界面开裂后的复合材料进行刚度衰减,最终形成4种方案计算出复合材料的偏轴拉伸强度.通过对比芳纶纤维和亚麻纤维两种弱界面复合材料的偏轴拉伸强度试验值,找到了最可靠的预报方案并具有良好的预报精度.  相似文献   

9.
共晶基陶瓷复合材料的强度模型   总被引:3,自引:0,他引:3  
根据细观结构内界面的强约束特性,通过纤维-基体内界面切应力确定了共晶陶瓷棒体的细观应力场.然后分析了两相界面处位错塞积产生的应力集中,获得基体内的最大应力,当最大拉应力等于基体理论断裂强度时,得到共晶棒体的断裂强度的解析表达式.考虑共晶陶瓷棒体长度和方位的随机性,根据概率理论得到共晶陶瓷基复合材料的宏观强度的理论模型.结果表明复合材料的宏观强度与亚微米纤维的直径和长度、以及亚微米纤维、基体、共晶陶瓷棒体的弹性常数有关.理论与实验结果十分接近,说明文中理论模型是合理的,同时证明了共晶界面对陶瓷复合材料的重要影响.  相似文献   

10.
不同应力分量下广义开尔文模型粘性系数探讨   总被引:1,自引:0,他引:1  
对不同应力分量下的广义开尔文模型应力应变关系进行了研究,推导了在不同应力分量下的广义开尔文模型的粘性应变增量计算式;通过对这些粘性应变增量计算式的比较分析,得到结论:对于线性粘弹性模型,当应力张量引起粘性变形的规律与应力偏量和球应力分别引起粘性变形的规律相同时,它们的系数满足关系式Ek/ηk=Gsk/ηsk=Kmk/ηmk;否则,这个关系式不成立.现有文献采用应力张量表示的粘性变形有限元计算式隐含假定了球应力与应力偏量产生的粘性变形规律相同.对于复杂的工程材料而言,这种假定并不总是合适的.这在工程问题粘性分析时值得注意.  相似文献   

11.
Based on an analysis of the deformation of an isolated void in a finite nonlinear viscous material, we establish the constitutive potentials for voided nonlinearly viscous materials, from which the related curves of the macroscopic stress, the average flow stress of the matrix material and the void volume fraction f are derived. However, the theory applies equally well to small strain, rate-independent J2 deformation theory solid. By considering the effects of the strain-hardening directly, a modifies Gurson equation are developed. Finally, we calculate the void relative growth-rates for the nonlinear materials, and in good agreement with existed numerical results.  相似文献   

12.
Acoustic wave propagation from surrounding medium into a soft material can generate acoustic radiation stress due to acoustic momentum transfer inside the medium and material, as well as at the interface between the two. To analyze acoustic-induced deformation of soft materials, we establish an acoustomechanical constitutive theory by com-bining the acoustic radiation stress theory and the nonlinear elasticity theory for soft materials. The acoustic radiation stress tensor is formulated by time averaging the momen-tum equation of particle motion, which is then introduced into the nonlinear elasticity constitutive relation to construct the acoustomechanical constitutive theory for soft materials. Considering a specified case of soft material sheet subjected to two counter-propagating acoustic waves, we demonstrate the nonlinear large deformation of the soft material and ana-lyze the interaction between acoustic waves and material deformation under the conditions of total reflection, acoustic transparency, and acoustic mismatch.  相似文献   

13.
14.
Two elastoplastic constitutive models based on the unified strength theory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which includes an associated/non-associated flow rule, strain-hardening/softening, and solutions of singularities. Those two constitutive models are appropriate for metallic and strength-different (SD) materials, respectively. Two verification examples are used to compare the computation results and test data using the two-dimensional finite difference code FLAC and the finite element code ANSYS, and the two constitutive models proposed in this paper are verified. Two application examples, the large deformation of a prismatic bar and the strain-softening behavior of soft rock under a complex stress state, are analyzed using the three-dimensional code FLAC3D. The two new elastoplastic constitutive models proposed in this paper can be used in bearing capacity evaluation or stability analysis of structures built of metallic or SD materials. The effect of the intermediate principal stress on metallic or SD material structures under complex stress states, including large deformation, three-dimensional and non-association problems, can be analyzed easily using the two constitutive models proposed in this paper.  相似文献   

15.
Void closing from a spherical shape to a crack is investigated quantitatively in the present study. The constitutive relation of the Void-free matrix is assumed to obey the Norton power law. A representative volume element (RVE) which includes matrix and void is employed and a Rayleigh-Ritz procedure is developed to study the deformation-rates of a spherical void and a penny-shaped crack. Based on an approximate interpolation scheme, an analytical model for void closure in nonlinear plastic materials is established. It is found that the local plastic flows of the matrix material are the main mechanism of void deformation. It is also shown that the relative void volume during the deformation depends on the Norton exponent, on the far-field stress triaxiality, as well as on the far-field effective strain. The predictions of void closure using the present model are compared with the corresponding results in the literature, showing good agreement. The model for void closure provides a novel way for process design and optimization in terms of elimination of voids in billets because the model for void closure can easily be applied in the CAE analysis.  相似文献   

16.
A constitutive theory is developed for shape memory polymers. It is to describe the thermomechanical properties of such materials under large deformations. The theory is based on the idea, which is developed in the work of Liu et al. [2006. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plasticity 22, 279-313], that the coexisting active and frozen phases of the polymer and the transitions between them provide the underlying mechanisms for strain storage and recovery during a shape memory cycle. General constitutive functions for nonlinear thermoelastic materials are used for the active and frozen phases. Also used is an internal state variable which describes the volume fraction of the frozen phase. The material behavior of history dependence in the frozen phase is captured by using the concept of frozen reference configuration. The relation between the overall deformation and the stress is derived by integration of the constitutive equations of the coexisting phases. As a special case of the nonlinear constitutive model, a neo-Hookean type constitutive function for each phase is considered. The material behaviors in a shape memory cycle under uniaxial loading are examined. A linear constitutive model is derived from the nonlinear theory by considering small deformations. The predictions of this model are compared with experimental measurements.  相似文献   

17.
A constitutive theory is developed for shape memory polymers. It is to describe the thermomechanical properties of such materials under large deformations. The theory is based on the idea, which is developed in the work of Liu et al. [2006. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modelling. Int. J. Plasticity 22, 279-313], that the coexisting active and frozen phases of the polymer and the transitions between them provide the underlying mechanisms for strain storage and recovery during a shape memory cycle. General constitutive functions for nonlinear thermoelastic materials are used for the active and frozen phases. Also used is an internal state variable which describes the volume fraction of the frozen phase. The material behavior of history dependence in the frozen phase is captured by using the concept of frozen reference configuration. The relation between the overall deformation and the stress is derived by integration of the constitutive equations of the coexisting phases. As a special case of the nonlinear constitutive model, a neo-Hookean type constitutive function for each phase is considered. The material behaviors in a shape memory cycle under uniaxial loading are examined. A linear constitutive model is derived from the nonlinear theory by considering small deformations. The predictions of this model are compared with experimental measurements.  相似文献   

18.
This paper discusses the growth of a pre-existing void in a nonlinear viscoelastic material subjected to remote hydrostatic tensions with different loading rates. The constitutive relation of this viscoelastic material is the one recently proposed by the present authors, which may be considered as a generalization of the non-Gaussian statistical theory in rubber elasticity. As the first order approx-imation, the above constitutive relation can be reduced to the “neo-Hookean” type viscoelastic one.Investigations of the influences of the material viscosity and the loading rate on the void growth, or on the cavitation are carried out. It is found that: (1) for generalized “inverse Langevin approximation” nonlinear viscoelastic materials, the cavitation limit does not exist, but there is a certain (remote) stress level at which the void will grow rapidly; (2) for generalized “Gaussian statistics” (neo-Hookean type) viscoelastic materials, the cavitation limit exists, and is an increasing function of the loading rate.The present discussions may be of importance in understanding the material failure process under high triaxial stress.  相似文献   

19.
On the basis of the nonlinear theory of elasticity, the general constitutive equation for an isotropic hyperelastic solid in the presence of initial stress is derived. This derivation involves invariants that couple the deformation with the initial stress and in general, for a compressible material, it requires 10 invariants, reducing to 9 for an incompressible material. Expressions for the Cauchy and nominal stress tensors in a finitely deformed configuration are given along with the elasticity tensor and its specialization to the initially stressed undeformed configuration. The equations governing infinitesimal motions superimposed on a finite deformation are then used to study the combined effects of initial stress and finite deformation on the propagation of homogeneous plane waves in a homogeneously deformed and initially stressed solid of infinite extent. This general framework allows for various different specializations, which make contact with earlier works. In particular, connections with results derived within Biot's classical theory are highlighted. The general results are also specialized to the case of a small initial stress and a small pre-deformation, i.e. to the evaluation of the acoustoelastic effect. Here the formulas derived for the wave speeds cover the case of a second-order elastic solid without initial stress and subject to a uniaxial tension [Hughes and Kelly, Phys. Rev. 92 (1953) 1145] and are consistent with results for an undeformed solid subject to a residual stress [Man and Lu, J. Elasticity 17 (1987) 159]. These formulas provide a basis for acoustic evaluation of the second- and third-order elasticity constants and of the residual stresses. The results are further illustrated in respect of a prototype model of nonlinear elasticity with initial stress, allowing for both finite deformation and nonlinear dependence on the initial stress.  相似文献   

20.
The effects of void size and hardening in a hexagonal close-packed single crystal containing a cylindrical void loaded by a far-field equibiaxial tensile stress under plane strain conditions are studied. The crystal has three in-plane slip systems oriented at the angle 60° with respect to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal plasticity formulation. The stress and deformation fields obtained with a local non-hardening constitutive formulation are compared to those obtained from a local hardening formulation and to those from a non-local formulation. Compared to the case of the non-hardening local constitutive formulation, it is shown that a local theory with hardening has only minor effects on the deformation field around the void, whereas a significant difference is obtained with the non-local constitutive relation. Finally, it is shown that the applied stress state required to activate plastic deformation at the void is up to three times higher for smaller void sizes than for larger void sizes in the non-local material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号