首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Al-doped ZnO (AZO) films prepared at different substrate temperature and AZO films with intentional Zn addition (ZAZO) during deposition at elevated substrate temperature were fabricated by radio frequency magnetron sputtering on glass substrate, and the resulting structural, electrical, optical properties together with the etching characteristics and annealing behavior were comparatively examined. AZO films deposited at 150 °C showed the optimum electrical properties and the largest grain size. XPS analysis revealed that AZO films deposited at elevated temperature of 450 °C contained large amount of Al content due to Zn deficiency, and that intentional Zn addition during deposition could compensate the deficiency of Zn to some extent. It was shown that the electrical, optical and structural properties of ZAZO films were almost comparable to those of AZO film deposited at 150 °C, and that ZAZO films had much smaller etching rate together with better stability in severe annealing conditions than AZO films due possibly to formation of dense structure.  相似文献   

2.
Quasi-crystal aluminum-doped zinc oxide (AZO) films were prepared by in situ radio frequency (RF) magnetron sputtering (sputtering without annealing) on glass substrates. The influence of deposition parameters on the optoelectronic and structural properties of the in situ deposited quasi-crystal AZO films was investigated in order to compare resulting samples. X-ray diffraction (XRD) patterns show that the quasi-crystal AZO thin films have excellent crystallization improved with increase of the RF power and substrate temperature, with an extremely preferential c-axis orientation exhibit sharp and narrow XRD pattern similar to that of single-crystal. Field emission scanning electron microscopy (FESEM) images show that quasi-crystal AZO thin films have uniform grains and the grain size increase with the increase of RF power and substrate temperature. Craters of irregular size with the columnar structure are observed in the quasi-crystal AZO thin films at a lower substrate temperature while many spherical shaped grains appeared at a higher substrate temperature. The average optical transmittance of all the quasi-crystal AZO films was over 85% in the 400-800 nm wavelength range. The resistivity of 4.176 × 10−4 Ω cm with the grain size of 76.4891 nm was obtained in the quasi-crystal AZO thin film deposited at 300 °C, under sputtering power of 140 W.  相似文献   

3.
Optical properties of Al-doped ZnO thin films by ellipsometry   总被引:1,自引:0,他引:1  
Al-doped ZnO thin films (AZO) were prepared on Si (1 0 0) substrates by using sub-molecule doping technique. The Al content was controlled by varying Al sputtering time. The as-prepared samples were annealed in vacuum chamber at 800 °C for 30 min. From the XRD observations, it is found that all films exhibit only the (0 0 2) peak, suggesting that they have c-axis preferred orientation. The average transmittance of the visible light is above 80%. Spectroscopic ellipsometry was used to extract the optical constants of the films. The absorption coefficient and the energy gap were then calculated. The results show that the absorption edge initially blue-shifts and then red-shifts with increase of Al content.  相似文献   

4.
A compound of 98 mol% ZnO and 1 mol% Al2O3 (AZO, Al:Zn = 98:2) was sintered at 1350 °C as a target and the AZO thin films were deposited on glass using a radio frequency magnetron sputtering system. The effects of deposition temperature (from room temperature to ~300 °C) on the optical transmission spectrum of the AZO thin films were studied. The Burstein–Moss shift was observed and used to prove that defects in the AZO thin films decreased with increasing deposition temperature. The variations in the optical band gap (E g) values of the AZO thin films were evaluated from plots of (αhv)2=c(?E g), revealing that the measured E g values increased with increasing deposition temperature. The effects of the H2 flow rate during deposition (0 %~11.76 %, deposition temperature of 200 °C) on the crystallization, morphology, resistivity, carrier concentration, carrier mobility, and optical transmission spectrum of the AZO thin films were measured. The chemical structures of the Ar-deposited and 2 % H2-flow rate-deposited AZO thin films (both were deposited at 200 °C) were investigated by XPS to clarify the mechanism of improvement in resistivity. The prepared AZO thin films were also used as transparent electrodes to fabricate amorphous silicon thin-film solar cells, and their properties were also measured.  相似文献   

5.
ZnO and Al-doped ZnO(ZAO) thin films have been prepared on glass substrates by direct current (dc) magnetron sputtering from 99.99% pure Zn metallic and ZnO:3 wt%Al2O3 ceramic targets, the effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. It shows that the surface morphologies of ZAO films exhibit difference from that of ZnO films, while their preferential crystalline growth orientation revealed by X-ray diffraction remains always the (0 0 2). The optical transmittance and photoluminescence (PL) spectra of both ZnO and ZAO films are obviously influenced by the substrate temperature. All films exhibit a transmittance higher than 86% in the visible region, while the optical transmittance of ZAO films is slightly smaller than that of ZnO films. More significantly, Al-doping leads to a larger optical band gap (Eg) of the films. It is found from the PL measurement that near-band-edge (NBE) emission and deep-level (DL) emission are observed in pure ZnO thin films. However, when Al was doped into thin films, the DL emission of the thin films is depressed. As the substrate temperature increases, the peak of NBE emission has a blueshift to region of higher photon energy, which shows a trend similar to the Eg in optical transmittance measurement.  相似文献   

6.
Transparent conducting Al-doped ZnO (ZnO:Al, AZO) thin films with good optical and electrical characteristics were prepared by direct current pulse magnetron sputtering. Textured surfaces of AZO films were obtained by etching with NaOH solution successfully and the effect of substrate temperature on the surface texture was investigated. The surface is covered with craters after etching with 5% NaOH solution, and the crater diameter decreases gradually as substrate temperature increases. For AZO film deposited at 270, the crater diameters is 0.5-1 μm, which is an effective surface texture for light trapping.  相似文献   

7.
Transparent aluminum-doped zinc oxide (AZO) thin films were deposited on quartz glass substrates by pulsed laser deposition (PLD) from ablating Zn-Al metallic targets. The structural, electrical and optical properties of these films were characterized as a function of Al concentration (0-8 wt.%) in the target. Films were deposited at a low substrate temperature of 150 °C under 11 Pa of oxygen pressure. It was observed that 2 wt.% of Al in the target (or 1.37 wt.% of Al doped in the AZO film) is the optimum concentration to achieve the minimum film resistivity and strong ultraviolet emission. The presence of Al in the ZnO film changes the carrier concentration and the intrinsic defects.  相似文献   

8.
X-ray diffraction (XRD) patterns revealed that the as-grown and annealed Al-doped ZnO (AZO) films grown on the n-Si (1 0 0) substrates were polycrystalline. Transmission electron microscopy (TEM) images showed that bright-contrast regions existed in the grain boundary, and high-resolution TEM (HRTEM) images showed that the bright-contrast regions with an amorphous phase were embedded in the ZnO grains. While the surface roughness of the AZO film annealed at 800 °C became smoother, those of the AZO films annealed at 900 and 1000 °C became rougher. XRD patterns, TEM images, selected-area electron diffraction patterns, HRTEM images, and atomic force microscopy (AFM) images showed that the crystallinity in the AZO thin films grown on the n-Si (1 0 0) substrates was enhanced resulting from the release in the strain energy for the AZO thin films due to thermal annealing at 800 °C. XRD patterns and AFM images show that the crystallinity of the AZO thin films annealed at 1000 °C deteriorated due to the formation of the amorphous phase in the ZnO thin films.  相似文献   

9.
Aluminum-doped zinc oxide (AZO) thin films have been deposited by electron beam evaporation technique on glass substrates. The structural, electrical and optical properties of AZO films have been investigated as a function of annealing temperature. It was observed that the optical properties such as transmittance, reflectance, optical band gap and refractive index of AZO films were strongly affected by annealing temperature. The transmittance values of 84% in the visible region and 97% in the NIR region were obtained for AZO film annealed at 475 °C. The room temperature electrical resistivity of 4.6×10−3 Ω cm has been obtained at the same temperature of annealing. It was found that the calculated refractive index has been affected by the packing density of the thin films, whereas, the high annealing temperature gave rise to improve the homogeneity of the films. The single-oscillator model was used to analyze the optical parameters such as the oscillator and dispersion energies.  相似文献   

10.
This paper studies the wet etching behavior of AZO (ZnO:Al) transparent conducting film with tetramethylammonium hydroxide (TMAH). The optimum optoelectronic film is prepared first using designated RF power, film thickness and controlled annealing heat treatment parameters. The AZO film is then etched using TMAH etchant and AZ4620 photoresist with controlled etchant concentration and temperature to examine the etching process effect on the AZO film optoelectronic properties. The experimental results show TMAH:H2O = 2.38:97.62 under 45 °C at the average etch rate of 22 nm/min as the preferred parameters. The activation energy drops as the TMAH concentration rises, while the etch rate increases along with the increase in TMAH concentration and temperature. After lithography, etching and photoresist removal, the conductivity of AZO film dramatically drops from 2.4 × 10−3 Ω cm to 3.0 × 10−3 Ω cm, while its transmittance decreases from 89% to 83%. This is due to the poor chemical stability of AZO film against AZ4620 photoresist, leading to an increase in surface roughness. In the photoresist postbaking process, carbon atoms diffused within the AZO film produce poor crystallinity. The slight decreases in zinc and aluminum in the thin film causes a carrier concentration change, which affect the AZO film optoelectronic properties.  相似文献   

11.
Bi-layer ZnO films with 2 wt.% Al (AZO; ZnO:Al) and 4 wt.% Ga-doped (GZO; ZnO:Ga) were deposited on the ZnO buffered and annealed ZnO buffered c(0 0 0 1)-sapphire(Al2O3) substrates respectively by Pulsed Laser Deposition (PLD). The effect of crystallinity of ZnO buffer layer on the crystallinity and electrical properties of the AZO/GZO bi-layer thin films was investigated. It was seen that the crystallinity of ZnO buffer layer had a great influence on the orientation and defect density of AZO/GZO bi-layer thin films from X-ray Diffraction (XRD) peaks and High Resolution Transmission Electron Microscopy (HRTEM) images. In a word, it was found in the films that more preferred c-axis orientation texture and reduction of the defects such as stacking faults and dislocations, with increasing of the crystallinity of ZnO buffer layer.  相似文献   

12.
Al-doped zinc oxide (AZO) thin films have been prepared by spray pyrolysis (SP) technique of zinc acetate and aluminium nitrate, and the effect of thickness on structural and optical properties has been investigated. The structural and optical characteristics of the AZO films were examined by X-ray diffraction (XRD) and double-beam spectrophotometry. These films, deposited on glass substrates at an optimal substrate temperature (TS = 450 °C), have a polycrystalline texture with a hexagonal structure. Transmission measurements showed that for visible wavelengths, the AZO films have an average transmission of over 90%. The optical parameters have been calculated. The dependence of the refractive index, n, and extinction coefficient, k, on the wavelength for the sprayed films is also reported. Optical band gap of AZO is 3.30 and 3.55 eV, respectively, depending on the film thicknesses.  相似文献   

13.
We have studied the properties of ZnO thin films grown by laser ablation of ZnO targets on (0 0 0 1) sapphire (Al2O3), under substrate temperatures around 400 °C. The films were characterized by different methods including X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and atomic force microscopy (AFM). XPS analysis revealed that the films are oxygen deficient, and XRD analysis with θ-2θ scans and rocking curves indicate that the ZnO thin films are highly c-axis oriented. All the films are ultraviolet (UV) sensitive. Sensitivity is maximum for the films deposited at lower temperature. The films deposited at higher temperatures show crystallite sizes of typically 500 nm, a high dark current and minimum photoresponse. In all films we observe persistent photoconductivity decay. More densely packed crystallites and a faster decay in photocurrent is observed for films deposited at lower temperature.  相似文献   

14.
In order to obtain p-type ZnO thin films, effect of atomic ratio of Zn:N:Al on the electronic and structural characteristic of ZnO thin films was investigated. Hall measurement indicated that with the increase of Al doping, conductive type of as-grown ZnO thin films changed from n-type to p-type and then to n-type again, reasons are discussed in details. Results of X-ray diffraction revealed that co-doped ZnO thin films have similar crystallization characteristic (0 0 2 preferential orientation) like that of un-doping. However, SEM measurement indicated that co-doped ZnO thin films have different surface morphology compared with un-doped ZnO thin films. p-type ZnO thin films with high hole concentration were obtained on glass (4.6 × 1018 cm−3) and n-type silicon (7.51 × 1019 cm−3), respectively.  相似文献   

15.
Al-doped ZnO (AZO) transparent conducting films were successfully prepared on glass substrates by RF magnetron sputtering method under different substrate temperatures. The microstructural, electrical and optical properties of AZO films were investigated in a wide temperature range from room temperature up to 350 °C by X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Hall measurement, and UV–visible meter. The nature of AZO films is polycrystalline thin films with hexagonal wurtzite structure and a preferred orientation along c-axis. The crystallinity and surface morphologies of the films are strongly dependent on the growth temperature, which in turn exerts a great effect on microstructural, electrical and optical properties of the AZO films. The atomic arrangement of AZO film having an wurtzite structure was indeed identified by the HRTEM as well as the Selected Area Electron Diffraction (SAED). The defect density of AZO film was investigated by HRTEM. The film deposited at 100 °C exhibited the relatively well crystallinity and the lowest resistivity of 3.6 × 10−4 Ω cm. The average transmission of AZO films in the visible range is all over 85%. More importantly, the low-resistance and high-transmittance AZO film was also prepared at a low temperature of 100 °C.  相似文献   

16.
Doped zinc oxide thin films are grown on glass substrate at room temperature under oxygen atmosphere, using pulsed laser deposition (PLD). O2 pressure below 1 Pa leads to conductive films. A careful characterization of the film stoichiometry and microstructure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) concludes on a decrease in crystallinity with Al and Ga additions (≤3%). The progressive loss of the (0 0 2) orientation is associated with a variation of the c parameter value as a function of the film thickness and substrate nature. ZnO:Al and ZnO:Ga thin films show a high optical transmittance (>80%) with an increase in band gap from 3.27 eV (pure ZnO) to 3.88 eV and 3.61 eV for Al and Ga doping, respectively. Optical carrier concentration, optical mobility and optical resistivity are deduced from simulation of the optical data.  相似文献   

17.
We report the influence of Al concentration on electrical, structural, optical and morphological properties of Al-As codoped p-ZnO thin films using RF magnetron sputtering. Al-As codoped p-ZnO films with different Al concentrations were fabricated using As back diffusion from the GaAs substrate and sputtering Al2O3 mixed ZnO targets (1, 2 and 4 at%). The grown films were investigated by Hall effect measurement, X-ray diffraction (XRD), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and atomic force microscopy (AFM) to study the electrical, structural, optical and morphological properties of the films. From the XRD, it was observed that both full-width at half-maximum (FWHM) and c-axis lattice constant have similar trends with respect to Al concentration. Hall measurements showed that the hole concentration increases as the Al concentration increases from 1015 to 1020 cm−3. The increase in hole concentration upon codoping was supported by the red shift in the near-band-edge (NBE) emission observed from room temperature PL spectra. The proposed p-type mechanism due to AsZn-2VZn complex was confirmed by low temperature PL and XPS analysis. The low FWHM, resistivity and peak-to-valley roughness observed by XRD, Hall measurement and AFM, respectively, suggest that 1 at% Al-doped ZnO:As film is the best codoped film.  相似文献   

18.
Al-doped ZnO (ZnO:Al) thin films with different Al contents were deposited on Si substrates using the radio frequency reactive magnetron sputtering technique. X-ray diffraction (XRD) measurements showed that the crystallinity of the films was promoted by appropriate Al content (0.75 wt.%). Then the ZnO:Al film with Al content of 0.75 wt.% was annealed in vacuum at different temperatures. XRD patterns revealed that the residual compressive stress decreased at higher annealing temperatures. While the surface roughness of the ZnO:Al film annealed at 300 °C became smoother, those of the ZnO:Al films annealed at 600 and 750 °C became rougher. The photoluminescence (PL) measurements at room temperature revealed a violet, two blue and a green emission. The origin of these emissions was discussed and the mechanism of violet and blue emission of ZnO:Al thin films were suggested. We concluded that the defect centers are mainly ascribed to antisite oxygen and interstitial Zn in annealed (in vacuum) ZnO:Al films.  相似文献   

19.
Aluminum-doped zinc oxide (AZO) films were deposited at 400 °C by radio-frequency magnetron sputtering using a compound AZO target. The effects of annealing atmospheres as well as hydrogen annealing temperatures on the structural, optical and electrical properties of the AZO films were investigated. It was found that the electrical resistivity varied depending on the atmospheres while annealing in air, nitrogen and hydrogen at 300 °C, respectively. Comparing with that for the un-annealed films, the resistivity of the films annealed in hydrogen decreased from 9.8 × 10−4 Ω cm to 3.5 × 10−4 Ω cm, while that of the films annealed in air and nitrogen increased. The variations in electrical properties are ascribed to both the changes in the concentration of oxygen vacancies and adsorbed oxygen at the grain boundaries. These results were clarified by the comparatively XPS analyzing about the states of oxygen on the surface of the AZO films. There was great increase in electrical resistivity due to the damage of the surfaces, when AZO films were annealed in hydrogen with a temperature higher than 500 °C, but high average optical transmittance of 80-90% in the range of 390-1100 nm were still obtained.  相似文献   

20.
Influence of both substrate temperature, Ts, and annealing temperature, Ta, on the structural, electrical and microstructural properties of sputtered deposited Pt thin films have been investigated. X-ray diffraction results show that as deposited Pt films (Ts = 300, 400 °C) are preferentially oriented along (1 1 1) direction. A little growth both along (2 0 0) and (3 1 1) directions are also noticed in the as deposited Pt films. After annealing in air (Ta = 500-700 °C), films become strongly oriented along (1 1 1) plane. With annealing temperature, average crystallite size, D, of the Pt films increases and micro-strain, e, and lattice constant, a0, decreases. Residual strain observed in the as deposited Pt films is found to be compressive in nature while that in the annealed films is tensile. This change in the strain from compressive to tensile upon annealing is explained in the light of mismatch between the thermal expansion coefficients of the film material and substrate. Room temperature resistivity of Pt films is dependant on both the Ts and Ta of the films. Observed decrease in the film resistivity with Ta is discussed in terms of annihilation of film defects and grain-boundary. Scanning electron microscopic study reveals that as the annealing temperature increases film densification improves. But at an annealing temperature of ∼600 °C, pinholes appear on the film surface and the size of pinhole increases with further increase in the annealing temperature. From X-ray photoelectron spectroscopic analysis, existence of a thin layer of chemisorbed atomic oxygen is detected on the surfaces of the as deposited Pt films. Upon annealing, coverage of this surface oxygen increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号