首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tachyonic inflationary universe model in the context of a Chaplygin gas equation of state is studied. General conditions for this model to be realizable are discussed. By using an effective exponential potential we describe in great details the characteristic of the inflationary universe model. The parameters of the model are restricted by using recent astronomical observations.  相似文献   

2.
Determining the mechanism behind the current cosmic acceleration constitutes a major question nowadays in theoretical physics. If the dark energy route is taken, this problem may potentially bring to light new insights not only in cosmology but also in high energy physics theories. Following this approach, we explore in this Letter some cosmological consequences of a new time-dependent parameterization for the dark energy equation of state (EoS), which is a well behaved function of the redshift z   over the entire cosmological evolution, i.e., z∈[−1,∞)z[1,). This parameterization allows us to divide the parametric plane (w0,w1)(w0,w1) in defined regions associated to distinct classes of dark energy models that can be confirmed or excluded from a confrontation with current observational data. By assuming a flat universe, a statistical analysis involving the most recent observations from type Ia supernovae, baryon acoustic oscillation peak, Cosmic Microwave Background shift parameter and Hubble evolution H(z)H(z) is performed to check the observational viability of the EoS parameterization here proposed.  相似文献   

3.
4.
We investigate the influence of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. We obtain the general Layser–Irvine equation in the presence of interactions, and find how, in that case, the virial theorem stands corrected. Using optical, X-ray and weak lensing data from 33 relaxed galaxy clusters, we put constraints on the strength of the coupling between the dark sectors. Available data suggests that this coupling is small but positive, indicating that dark energy might be decaying into dark matter. Systematic effects between the several mass estimates, however, should be better known, before definitive conclusions on the magnitude and significance of this coupling could be established.  相似文献   

5.
We examined the interacting holographic dark energy model in a universe with spatial curvature. Using the near-flatness condition and requiring that the universe is experiencing an accelerated expansion, we have constrained the parameter space of the model and found that the model can accommodate a transition of the dark energy from ωD>−1ωD>1 to ωD<−1ωD<1.  相似文献   

6.
We consider perturbations in a cosmological model with a small coupling between dark energy and dark matter. We prove that the stability of the curvature perturbation depends on the type of coupling between dark sectors. When the dark energy is of quintessence type, if the coupling is proportional to the dark matter energy density, it will drive the instability in the curvature perturbations; however if the coupling is proportional to the energy density of dark energy, there is room for the stability in the curvature perturbations. When the dark energy is of phantom type, the perturbations are always stable, no matter whether the coupling is proportional to the one or the other energy density.  相似文献   

7.
We stochastically formulate the theory of scalar quantum electrodynamics on a de Sitter background. This reproduces the leading infrared logarithms at each loop order. It also allows one to sum the series of leading infrared logarithms to obtain explicit, nonperturbative results about the late time behavior of the system. One consequence is confirmation of the conjecture by Davis, Dimopoulos, Prokopec and Törnkvist that super-horizon photons acquire mass during inflation. We compute . The scalar stays perturbatively light with . Interestingly, the induced change in the cosmological constant is negative, δΛ ? −0.6551 × 3GH4/π.  相似文献   

8.
In this Letter we have investigated the cosmological dynamics of non-locally corrected gravity involving a function of the inverse d'Alembertian of the Ricci scalar, f(−1R)f(−1R). Casting the dynamical equations into local form, we derive the fixed points of the dynamics and demonstrate the existence and stability of a one parameter family of dark energy solutions for a simple choice, f(−1R)∼exp(α−1R)f(−1R)exp(α−1R). The effective EoS parameter is given by, weff=(α−1)/(3α−1)weff=(α1)/(3α1) and the stability of the solutions is guaranteed provided that 1/3<α<2/31/3<α<2/3. For 1/3<α<1/21/3<α<1/2 and 1/2<α<2/31/2<α<2/3, the underlying system exhibits phantom and non-phantom behavior respectively; the de Sitter solution corresponds to α=1/2α=1/2. For a wide range of initial conditions, the system mimics dust like behavior before reaching the stable fixed point. The late time phantom phase is achieved without involving negative kinetic energy fields. A brief discussion on the entropy of de Sitter space in non-local model is included.  相似文献   

9.
Recently a lot of attention has been given to building dark energy models in which the equation-of-state parameter w   can cross the phantom divide w=−1w=1. However, to our knowledge, these models with crossing the phantom divide only provide the possibility that w can cross −1. They do not answer another question: why crossing phantom divide occurs recently? Since in many existing models whose equation-of-state parameter can cross the phantom divide, w undulates around −1 randomly, why are we living in an epoch  w<−1w<1? This can be regarded as the second cosmological coincidence problem. In this Letter, we propose a possible approach to alleviate this problem within a hybrid dark energy model.  相似文献   

10.
This Letter presents an exact analytic solution of a simple cosmological model in presence of both nonrelativistic matter and scalar field where Einstein's cosmological constant Λ appears as an integration constant. Unlike Einstein's cosmological constant ascribed to vacuum energy, the dark energy density and the energy density of the ordinary matter decrease at the same rate during the expansion of the universe. Therefore the model is free of the coincidence problem. Comparing the predictions using this model with the current cosmological observations shows that the results are consistent.  相似文献   

11.
12.
A generally parameterized equation of state (EOS) is investigated in the cosmological evolution with bulk viscosity media modelled as dark fluid, which can be regarded as a unification of dark energy and dark matter. Compared with the case of the perfect fluid, this EOS has possessed four additional parameters, which can be interpreted as the case of the non-perfect fluid with time-dependent viscosity or the model with variable cosmological constant. From this general EOS, a completely integrable dynamical equation to the scale factor is obtained with its solution explicitly given out. (i) In this parameterized model of cosmology, for a special choice of the parameters we can explain the late-time accelerating expansion universe in a new view. The early inflation, the median (relatively late time) deceleration, and the recently cosmic acceleration may be unified in a single equation. (ii) A generalized relation of the Hubble parameter scaling with the redshift is obtained for some cosmology interests. (iii) By using the SNe Ia data to fit the effective viscosity model we show that the case of matter described by p=0p=0 plus with effective viscosity contributions can fit the observational gold data in an acceptable level.  相似文献   

13.
14.
Dynamical wave function collapse models entail the continuous liberation of a specified rate of energy arising from the interaction of a fluctuating scalar field with the matter wave function. We consider the wave function collapse process for the constituents of dark matter in our universe. Beginning from a particular early era of the universe chosen from physical considerations, the rate of the associated energy liberation is integrated to yield the requisite magnitude of dark energy around the era of galaxy formation. Further, the equation of state for the liberated energy approaches w→−1w1 asymptotically, providing a mechanism to generate the present acceleration of the universe.  相似文献   

15.
The dynamical behaviors of two interacting dark energy models are considered. In addition to the scaling attractors found in the non-interacting quintessence model with exponential potential, new accelerated scaling attractors are also found in the interacting dark energy models. The coincidence problem is reduced to the choice of parameters in the interacting dark energy models.  相似文献   

16.
In the holographic Ricci dark energy (RDE) model, the parameter α plays an important role in determining the evolutionary behavior of the dark energy. When α<1/2, the RDE will exhibit a quintom feature, i.e., the equation of state of dark energy will evolve across the cosmological constant boundary w=−1. Observations show that the parameter α is indeed smaller than 1/2, so the late-time evolution of RDE will be really like a phantom energy. Therefore, it seems that the big rip is inevitable in this model. On the other hand, the big rip is actually inconsistent with the theoretical framework of the holographic model of dark energy. To avoid the big rip, we appeal to the extra dimension physics. In this Letter, we investigate the cosmological evolution of the RDE in the braneworld cosmology. It is of interest to find that for the far future evolution of RDE in a Randall–Sundrum braneworld, there is an attractor solution where the steady state (de Sitter) finale occurs, in stead of the big rip.  相似文献   

17.
In this Letter we study adiabatic and isocurvature perturbations in the frame of inflation with multiple sound speeds involved. We suggest this scenario can be realized by a number of generalized scalar fields with arbitrary kinetic forms. These scalars have their own sound speeds respectively, so the propagations of field fluctuations are individual. Specifically, we study a model constructed by two DBI type actions. We find that the critical length scale for the freezing of perturbations corresponds to the maximum sound horizon. Moreover, if the mass term of one field is much lighter than that of the other, the entropy perturbation could be quite large and so may give rise to a growth outside sound horizon. At cubic order, we find that the non-Gaussianity of local type is possibly large when entropy perturbations are able to convert into curvature perturbations. We also calculate the non-Gaussianity of equilateral type approximately.  相似文献   

18.
Taking into account effects of late energy injection, we examine big bang nucleosynthesis (BBN) constraints on axino dark matter scenarios with long-lived charged sleptons. We calculate 4-body slepton decays into the axino, a lepton, and a quark–antiquark pair since they govern late hadronic energy injection and associated BBN constraints. For supersymmetric hadronic axion models, we present the obtained hadronic BBN constraints and show that they can be more restrictive than the ones associated with catalyzed BBN via slepton-bound-state formation. From the BBN constraints on hadronic and electromagnetic energy release, we find new upper limits on the Peccei–Quinn scale.  相似文献   

19.
Brane inflationary universe model in the context of a Chaplygin gas equation of state is studied. General conditions for this model to be realizable are discussed. In the high-energy limit and by using a chaotic potential we describe in great details the characteristic of this model. The parameters of the model are restricted by using recent astronomical observations.  相似文献   

20.
We present a kind of exact inflationary solution in the chaotic inflation scenario to non-minimal coupled scalar field, taking the Hubble parameter directly as a function of the scalar field φ, H(φ) = αφ^n. Using the analysis of the WMAP3 data, we give the range of power index n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号