首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The many-body effect in the L3-M23M23 Auger-electron spectroscopy (AES) spectrum of metallic Zn is discussed. The lifetime width and residual relaxation energy shift of the two M23-hole state are governed by the (super) Coster-Kronig (sCK) transitions of two M23-hole state. The residual relaxation energy shift and decay width of the two M23-hole state are calculated in an average configuration by an ab initio atomic many-body theory. The agreement with experiment is good. To elucidate the many-body effect in the two-hole states, it is necessary to be able to discriminate individual components of the multiplet-split AES spectrum. We discuss how to discriminate individual components of the multiplet-split L3-M23M23 AES spectrum of metallic Zn by angle-resolved Auger-photoelectron coincidence spectroscopy (AR-APECS) in order to determine accurately their line shapes, multiplet splitting energies, and spin states (singlet etc.).  相似文献   

2.
We present and discuss X-ray absorption spectroscopy and resonant photoemission measurements on Fe nanostructures self-assembled on MgO(0 0 1). For Fe coverages below 1 ML equivalent we measured an increase of the Fe L23 branching ratio and changes in the splitting, widths and relative intensities of the different final states in the L3M23M23 resonant Auger peak. Scanning tunnelling microscopy indicates that the average lateral dimensions of the self-aggregated structures decrease with decreasing Fe amount, from 12 nm at 15 ML nominal Fe amount to 5 nm at 2 ML Fe. This observation allows to interpret the observed changes in the 3d band electronic properties in terms of the evolution of the Fe local atomic coordination from a bulk-like situation to a configuration where low dimensionality effects are significant.  相似文献   

3.
The adsorption of atomic Se on a Fe(1 1 0) surface is examined using the density functional theory (DFT). Selenium is adsorbed in high-symmetry adsorption sites: the -short and long-bridge, and atop sites at 1/2, 1/4, and 1 monolayer (ML) coverages. The long bridge (LB) site is found to be the most stable, followed by the short bridge (SB) and top sites (T). The following overlayer structures were examined, p(2 × 2), c(2 × 2), and p(1 × 1), which correspond to 1/4 ML, 1/2 ML, and 1 ML respectively. Adsorption energy is −5.23 eV at 1/4 ML. Se adsorption results in surface reconstruction, being more extensive for adsorption in the long bridge site at 1/2 ML, with vertical displacements between +8.63 and −6.69% -with regard to the original Fe position-, affecting the 1st and 2nd neighbours. The largest displacement in x or y-directions was determined to be 0.011, 0.030, and 0.021 Å for atop and bridge sites. Comparisons between Se-adsorbed and pure Fe surfaces revealed reductions in the magnetic moments of surface-layer Fe atoms in the vicinity of the Se. At the long bridge site, the presence of Se causes a decrease in the surface Fe d-orbital density of states between 4 and 5 eV below Fermi level. The density of states present a contribution of Se states at −3.1 eV and −12.9 eV. stabilized after adsorption. The Fe-Fe overlap population decrease and a Fe-Se bond are formed at the expense of the metallic bond.  相似文献   

4.
Spin-polarized scanning tunneling microscopy and spectroscopy (SP-STM/STS) has been performed on clean and sulfur-covered three-dimensional Fe islands on W(1 1 0). Upon dosing with H2S the island surface is covered with 1/3 ML S leading to a c(3 × 1) reconstruction. The characteristic magnetic vortex structure is observable before and after dosing, even though the electronic structure of the surface is modified as is shown by SP-STS.  相似文献   

5.
The orientation of hexafluorobenzene (C6F6) on the Cu(1 1 1) surface has been determined for different coverages with the help of near edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). The adsorption geometry and the bonding mode of C6F6 differ significantly in comparison to its hydrocarbon analog C6H6. C6F6 is found to adsorb on Cu(1 1 1) with the ring plane parallel to the surface for coverages below 10 ML. Next to the distinct multilayer, bilayer and monolayer phases we also present evidence of sub-monolayer (i.e., 1/2 ML) coverage with different electronic structure. These findings are explained in a phenomenological model based on fluorine’s property as a σ-acceptor and a π-donor and the resulting bond polarization within the molecule, which is stabilized by image-potential screening within the substrate.  相似文献   

6.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

7.
Feng Gao 《Surface science》2009,603(8):1126-10202
RuO2(1 1 0) was formed on Ru(0 0 0 1) under oxygen-rich reaction conditions at 550 K and high pressures. This phase was also synthesized using pure O2 and high reaction temperatures. Subsequently the RuO2 was subjected to CO oxidation reaction at stoichiometric and net reducing conditions at near-atmospheric pressures. Both in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and post-reaction Auger electron spectroscopy (AES) measurements indicate that RuO2 gradually converts to a surface oxide and then to a chemisorbed oxygen phase. Reaction kinetics shows that the chemisorbed oxygen phase has the highest reactivity due to a smaller CO binding energy to this surface. These results also show that a chemisorbed oxygen phase is the thermodynamically stable phase under stoichiometric and reducing reaction conditions. Under net oxidizing conditions, RuO2 displays high reactivity at relatively low temperatures (?450 K). We propose that this high reactivity involves a very reactive surface oxygen species, possibly a weakly bound, atomic oxygen or an active molecular O2 species. RuO2 deactivates gradually under oxidizing reaction conditions. Post-reaction AES measurements reveal that this deactivation is caused by a surface carbonaceous species, most likely carbonate, that dissociates above 500 K.  相似文献   

8.
We present results on the growth and magnetic anisotropies of Co75Fe25 films grown on a Cu(1 1 0) single crystal. Angular dependent MOKE measurements show a thickness dependent, in-plane rotation of the easy axis of magnetisation of up to 60° from the [0 0 1] direction (towards [−1 1 0]). For a film thickness of 5 ML, just greater than that required for the onset of ferromagnetism, uniaxial anisotropy is observed with the easy axis along the [0 0 1] direction. As the film thickness increases this is seen to rotate in-plane towards the [−1 1 0] direction as the contribution from the cubic anisotropy constant grows. At a film thickness of 9 ML there is predominantly cubic anisotropy and at 10 ML the easy axis is rotated to 150° with respect to the [1 −1 0] axis, where it is stabilised.  相似文献   

9.
Dissociative chemisorption of O2 on Cu(1 0 0), S/Cu(1 0 0) and Ag/Cu(1 0 0) surface alloy has been investigated by Auger electron spectroscopy (AES). A strong reduction in the initial O2 chemisorption probability (S0) from 0.05 to 7.4 × 10−3 is observed already at an Ag coverage of 0.02 ML. Further Ag deposition results only in a moderate decrease in S0. Similar inhibition of O2 dissociation is observed on S/Cu(1 0 0). It is concluded that at very low Ag coverages, the reduced reactivity of Ag/Cu(1 0 0) towards O2 dissociation is primarily due to the steric blocking of the surface defects and that any electronic effects are only secondary and present only at higher Ag coverages.  相似文献   

10.
We have investigated the growth of Co nanoparticles on θ-Al2O3/CoAl(1 0 0) by means of Auger electron spectroscopy (AES), high-resolution electron energy loss spectroscopy (EELS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Due to Volmer-Weber growth, Co forms particles with a mean diameter of approximately 2.5 nm and height of 0.8 nm. Even on the entirely covered oxide, there is no Ostwald ripening and Co particles stay structurally isolated. The nanoparticles exhibit a small size distribution and tend to form chains, as predetermined by the streak structure of the oxide template. For sufficient high coverages Co-core-CoO-shell nanoparticles may be evidenced, which is explained as a result of surfactant oxygen. The nanostructured particles may open the door to numerous applications, such as in catalysis and magnetoelectronic applications, where large areas of ordered nanodots are desired.  相似文献   

11.
Growth and surface morphology of epitaxial Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) trilayers constituting a magnetic tunnel junction were investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). STM reveals a grain-like growth mode of MgO on Fe(1 1 0) resulting in dense MgO(1 1 1) films at room temperature as well as at 250 °C. As observed by STM, initial deposition of MgO leads to a partial oxidation of the Fe(1 1 0) surface which is confirmed by Auger electron spectroscopy. The top Fe layer deposited on MgO(1 1 1) at room temperature is relatively rough consisting of clusters which can be transformed by annealing to an atomically flat epitaxial Fe(1 1 0) film.  相似文献   

12.
Jooho Kim  Bruce E. Koel 《Surface science》2006,600(19):4622-4632
Nanosized gold particles supported on reducible metal oxides have been reported to show high catalytic activity toward CO oxidation at low temperature. This has generated great scientific and technological interest, and there have been many proposals to explain this unusual activity. One intriguing explanation that can be tested is that of Nørskov and coworkers [Catal. Lett. 64 (2000) 101] who suggested that the “unusually large catalytic activity of highly-dispersed Au particles may in part be due to high step densities on the small particles and/or strain effects due to the mismatch at the Au-support interface”. In particular, their calculations indicated that the Au(2 1 1) stepped surface would be much more reactive towards O2 dissociative adsorption and CO adsorption than the Au(1 1 1) surface. We have now studied the adsorption of O2 and O3 (ozone) on an Au(2 1 1) stepped surface. We find that molecular oxygen (O2) was not activated to dissociate and produce oxygen adatoms on the stepped Au(2 1 1) surface even under high-pressure (700 Torr) conditions with the sample at 300-450 K. Step sites do bind oxygen adatoms more tightly than do terrace sites, and this was probed by using temperature programmed desorption (TPD) of O2 following ozone (O3) exposures to produce oxygen adatoms up to a saturation coverage of θO = 0.90 ML. In the low-coverage regime (θO ? 0.15 ML), the O2 TPD peak at 540 K, which does not shift with coverage, is attributed to oxygen adatoms that are bound at the steps on the Au(2 1 1) surface. At higher coverages, an additional lower temperature desorption peak that shifts from 515 to 530 K at saturation coverage is attributed to oxygen adsorbed on the (1 1 1) terrace sites of the Au(2 1 1) surface. Although the desorption kinetics are likely to be quite complex, a simple Redhead analysis gives an estimate of the desorption activation energy, Ed, for the step-adsorbed oxygen of 34 kcal/mol and that for oxygen at the terraces near saturation coverage of 33 kcal/mol, values that are similar to others reported on Au surfaces. Low Energy Electron Diffraction (LEED) indicates an oxygen-induced step doubling on the Au(2 1 1) surface at low-coverages (θO = 0.08-0.17 ML) and extensive disruption of the 2D ordering at the surface for saturation coverages of oxygen (θO ? 0.9 ML). Overall, our results indicate that unstrained step sites on Au(2 1 1) surfaces of dispersed Au nanoparticles do not account for the novel reactivity of supported Au catalysts for CO oxidation.  相似文献   

13.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other.  相似文献   

14.
The valence hole created in Ni metal either by the L2-L3V Coster–Kronig (CK) transition or by the L3V shakeup/off becomes screened out prior to the L3-hole decay. We denote the atomic shell Lx (x = 2, 3) by LX. The metastable two-hole L3V state relaxes to the fully relaxed single L3-hole state before the L3-hole decays. Thus, the coincidence L2-L3(V)-VV(V) Auger-electron spectrum resembles closely the coincidence L3-VV Auger-electron spectrum. The final state of the CK transition preceded Auger transition is a two-hole state rather than a three-hole state. The four-hole satellite about 8 eV below the L3-VV main line in the singles (non-coincidence) Auger-electron spectrum is partly due to the L3VV-VVVV transition and the L2-L3VV-VVVV transition. The valence holes created either by the L2-L3VV transition or by the L3VV double shakeup/off remain localized during the L3-hole decay. The L3-hole lifetime widths of Fe, Co and Ni metals are determined from the APECS spectra. The agreement between experiment and theory (the independent-particle approximation) is poor.  相似文献   

15.
The adsorption and reactivity of SO2 on the Ir(1 1 1) and Rh(1 1 1) surfaces were studied by surface science techniques. X-ray photoelectron spectroscopy measurements showed that SO2 was molecularly adsorbed on both the Ir(1 1 1) surface and the Rh(1 1 1) surface at 200 K. Adsorbed SO2 on the Ir(1 1 1) surface disproportionated to atomic sulfur and SO3 at 300 K, whereas adsorbed SO2 on the Rh(1 1 1) surface dissociated to atomic sulfur and oxygen above 250 K. Only atomic sulfur was present on both surfaces above 500 K, but the formation process and structure of the adsorbed atomic sulfur on Ir(1 1 1) were different from those on Rh(1 1 1). On Ir(1 1 1), atomic sulfur reacted with surface oxygen and was completely removed from the surface, whereas on Rh(1 1 1), sulfur did not react with oxygen.  相似文献   

16.
The adsorption and desorption of sulphur on the clean reconstructed Au(1 1 0)-(1 × 2) surface has been studied by low energy electron diffraction, Auger electron spectroscopy and temperature programmed desorption. The results obtained show a complex behaviour of the S/Au(1 1 0) system during sulphur desorption at different temperatures. Two structures of the stable ordered sulphur overlayer on the Au(1 1 0) surface, p(4 × 2) and c(4 × 4), were found after annealing the S/Au(1 1 0) system at 630 K and 463 K, respectively. The corresponding sulphur coverage for these overlayers was estimated by AES signal intensity analysis of the Au NOO and S LMM Auger lines to be equal to 0.13 ML and 0.2 ML, respectively. Both sulphur structures appear after removing an excess of sulphur, which mainly desorbs at 358 K as determined from TPD spectra. Furthermore, it was not possible to produce the lower coverage p(4 × 2) sulphur structure by annealing the c(4 × 4) surface. In the case of the p(4 × 2) S overlayer on the Au(1 1 0)-(1 × 2) surface it is proposed that the sulphur is attached to “missing row” sites only. The c(4 × 4) S overlayer arises via desorption of S2 molecules that are formed on the surface due to mobility of sulphur atoms after a prolonged anneal.  相似文献   

17.
The growth of ultrathin Fe films of various coverages on Ge(1 1 1) at room temperature using molecular beam epitaxy (MBE) was studied via X-ray photoelectron diffraction (XPD or XPED) together with low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). All experimentally observed XPD patterns suggested local order structures of the Fe layers for all thicknesses studied. The short-range order of the resulting structures was found to be enhanced for thinner layers whereas the long-range order was gradually lost with increasing Fe thicknesses. At a very low coverage of 0.8 Å Fe and Ge tend to react to the partly ordered structure in which Fe atoms were located in local environments similar to those for higher Fe coverages. Comparison of theoretical and experimental XPD patterns, along with XPS results, showed that intermixing between Fe and Ge occurred during the pseudomorphic growth with a stacking fault near the interface for all Fe coverages under study. Nevertheless, small percentage of domains without the stacking fault was also found to coexist with those with the stacking fault by performing a quantitative analysis of a reliability factor R of the Fe2p pattern for 5.4 Å. The orientation changes of the Ge2p and Ge3d XPD patterns with Fe thickness were unambiguously explained in terms of their different dependencies on the overlayer thickness due to the different inelastic mean free path lengths used in the simulations. Also, Fe got increasingly enriched in the grown layers with increased Fe coverage. The resulting structures and intermixing are discussed in detail.  相似文献   

18.
This study first reports the initial growth stages of sodium chloride (NaCl) on Ag(1 1 0) at room temperature. NaCl grows in bi-layer mode along its [1 0 0] axis and gives rise to (4 × 1) and (1 × 2) reconstructed domains for coverages lower than two monolayers (ML), a minimal thickness inducing a bi-dimensional closed film. In addition, a 10 ML NaCl film has been examined by low energy electron diffraction (LEED). LEED analysis leads to the dissociation of the NaCl deposit in a few minutes. The NaCl dissociation implies Cl desorption from the surface and Na remaining on it. The residual Na is arranged in the form of a (2 × 1) surface reconstruction and is found to be strongly bounded to the Ag substrate. These findings have been established by using the X-ray photoelectron spectroscopy technique.  相似文献   

19.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

20.
The L2,3-M2,3V resonant Auger electron spectroscopy (RAES) spectrum of Ti metal measured by Le Fêvre et al. [P. Le Fêvre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B69 (2004) 155421] is analyzed in the light of relaxation and decay of the resonantly excited L2,3-hole states. The relaxation time of the resonantly excited L2,3-hole state to the fully relaxed (screened) one is much shorter than the L2,3-hole Auger decay time, whereas the participant Coster–Kronig (CK) decay time of the resonantly excited L2-hole state to the fully relaxed L3-hole state at the L2 resonance is as short as the relaxation time of the resonantly excited L2-hole state to the fully relaxed one. The excited electron is predominantly either rapidly decoupled from the L2,3-hole decay or annihilated by the participant CK decay. Thus, near the L2,3 edges the L2,3-M2,3V RAES spectral peak appears at constant kinetic energy. The L2,3-M2,3V RAES spectrum shows a normal L2,3-M2,3V Auger decay profile not modulated by the density of empty d states probed by the resonant excitation. Not only the relaxation time but also the participant CK decay time depends on photon energy because they depend on the density of empty d states probed by the resonant excitation. As a result, the L2,3 X-ray absorption spectroscopy spectral line broadening depends on photon energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号