首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
In this Letter, we investigate the perturbed nonlinear Schrödinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.  相似文献   

2.
We study a class of nonlocal systems which can be described by a local scalar field diffusing in an auxiliary radial dimension. As examples p-adic, open and boundary string field theory are considered on Minkowski, Friedmann–Robertson–Walker and Euclidean metric backgrounds. Starting from distribution-like initial field configurations which are constant almost everywhere, we construct exact and approximate nonlocal solutions. The Euclidean p-adic lump is interpreted as a solitonic brane, and the Euclidean kink of supersymmetric open string field theory as an instanton. Some relations between solutions of different string theories are highlighted also thanks to a reformulation of nonlocal systems as fixed points in a renormalization group flow.  相似文献   

3.
In this article, a variety of solitary wave solutions are found for some nonlinear equations. In mathematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study travelling wave solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into the corresponding partial differential equation and the rational exp (?φ(η))-expansion method is implemented to find exact solutions of nonlinear equation. We find hyperbolic, trigonometric, rational and exponential function solutions using the above equation. The results of various studies show that the suggested method is very effective and can be used as an alternative for finding exact solutions of nonlinear equations in mathematical physics. A comparative study with the other methods gives validity to the technique and shows that the method provides additional solutions. Graphical representations along with the numerical data reinforce the efficacy of the procedure used. The specified idea is very effective, pragmatic for partial differential equations of fractional order and could be protracted to other physical phenomena.  相似文献   

4.
In this paper, we find exact solutions of some nonlinear evolution equations by using generalized tanh–coth method. Three nonlinear models of physical significance, i.e. the Cahn–Hilliard equation, the Allen–Cahn equation and the steady-state equation with a cubic nonlinearity are considered and their exact solutions are obtained. From the general solutions, other well-known results are also derived. Also in this paper, we shall compare the generalized tanh–coth method and generalized (G /G )-expansion method to solve partial differential equations (PDEs) and ordinary differential equations (ODEs). Abundant exact travelling wave solutions including solitons, kink, periodic and rational solutions have been found. These solutions might play important roles in engineering fields. The generalized tanh–coth method was used to construct periodic wave and solitary wave solutions of nonlinear evolution equations. This method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that the generalized tanh–coth method, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving nonlinear problems.  相似文献   

5.
We show that the Dirac equation is separable in the circularly symmetric metric in three dimensions and when the background spacetime is de Sitter we find exact solutions to the radial equations. Using these results we show that the de Sitter horizon has a cross section equal to zero for the massless Dirac field, as in the case of the scalar field. Also, using the improved brick wall model we calculate the fermionic entropy associated with the de Sitter horizon and we compare it with some results previously published.  相似文献   

6.
《Physica A》2006,369(2):408-416
We show that the maximum entropy approach proposed by El-Wakil, Elhanbaly, and Abdou (from now on EEA) in [S.A. El-Wakil, A. Elhanbaly, M.A. Abdou, Physica A 323 (2003) 213] for solving approximately the collisional Vlasov equation actually can provide exact solutions if properly implemented. We consider here two alternative procedures for obtaining exact maximum entropy solutions of the aforementioned equation. On the one hand, after identifying an appropriate set of relevant mean values (moments), we show that there are exact maximum entropy solutions associated with that set of moments. These solutions can be studied focusing either on the equations of motion of the moments themselves, or on the equations of motion of the corresponding Lagrange multipliers. On the other hand, it is possible to find exact solutions of the reduced equation considered by EEA, if one takes explicitly into account the zeroth-order moment of the solutions.  相似文献   

7.
General quantum gravity arguments predict that Lorentz symmetry might not hold exactly in nature. This has motivated much interest in Lorentz breaking gravity theories recently. Among such models are vector-tensor theories with preferred direction established at every point of spacetime by a fixed-norm vector field. The dynamical vector field defined in this way is referred to as the "aether". In this paper, we put forward the idea of a null aether field and introduce, for the first time, the Null Aether Theory(NAT) — a vector-tensor theory. We first study the Newtonian limit of this theory and then construct exact spherically symmetric black hole solutions in the theory in four dimensions, which contain Vaidya-type non-static solutions and static Schwarzschild-(A)dS type solutions, Reissner-Nordstr?m-(A)dS type solutions and solutions of conformal gravity as special cases. Afterwards, we study the cosmological solutions in NAT:We find some exact solutions with perfect fluid distribution for spatially flat FLRW metric and null aether propagating along the x direction. We observe that there are solutions in which the universe has big-bang singularity and null field diminishes asymptotically. We also study exact gravitational wave solutions — AdS-plane waves and pp-waves — in this theory in any dimension D ≥ 3. Assuming the Kerr-Schild-Kundt class of metrics for such solutions, we show that the full field equations of the theory are reduced to two, in general coupled, differential equations when the background metric assumes the maximally symmetric form. The main conclusion of these computations is that the spin-0 aether field acquires a "mass" determined by the cosmological constant of the background spacetime and the Lagrange multiplier given in the theory.  相似文献   

8.
Proofs are developed to explicitly show that the ionization energy theory is a renormalized theory, which mathematically exactly satisfies the renormalization group formalisms developed by Gell–Mann–Low, Shankar and Zinn-Justin. However, the cutoff parameter for the ionization energy theory relies on the energy-level spacing, instead of lattice point spacing in k-space. Subsequently, we apply the earlier proofs to prove that the mathematical structure of the ionization-energy dressed electron–electron screened Coulomb potential is exactly the same as the ionization-energy dressed electron–phonon interaction potential. The latter proof is proven by means of the second-order time-independent perturbation theory with the heavier effective mass condition, as required by the electron–electron screened Coulomb potential. The outcome of this proof is that we can derive the heat capacity and the Debye frequency as a function of ionization energy, which can be applied in strongly correlated matter and nanostructures.  相似文献   

9.
The light-like linear dilaton background presents a simple time dependent solution of type II supergravity equations of motion that preserves 1/2 supersymmetry in ten dimensions. We construct supergravity D-brane solutions in a linear dilaton background starting from the known intersecting brane solutions in string theory. By applying a Penrose limit on the intersecting (NS1–NS5–NS5′)-brane solution, we find out a D5-brane in a linear dilaton background. We solve the Killing spinor equations for the brane solutions explicitly, and show that they preserve 1/4 supersymmetry. We also find a M5-brane solution in eleven-dimensional supergravity.  相似文献   

10.
We consider the recently proposed non-relativistic Ho?ava–Lifshitz four-dimensional theory of gravity. We study a particular limit of the theory which admits flat Minkowski vacuum and we discuss thoroughly the quadratic fluctuations around it. We find that there are two propagating polarizations of the metric. We then explicitly construct a spherically symmetric, asymptotically flat, black hole solution that represents the analog of the Schwarzschild solution of GR. We show that this theory has the same Newtonian and post-Newtonian limits as GR and thus, it passes the classical tests. We also consider homogeneous and isotropic cosmological solutions and we show that although the equations are identical with GR cosmology, the couplings are constrained by the observed primordial abundance of 4He.  相似文献   

11.
By starting from the stochastic Hamiltonian of the three correlated spins and modeling their frequency fluctuations as caused by dephasing noisy environments described by Ornstein-Uhlenbeck (OU) processes, we study the dynamics of quantum correlations, including entanglement and quantum discord. Of course, in this article, we use two definitions for the quantum discord (global quantum discord and quantum dissension). We prepared initially our open system with the Greenberger-Horne-Zeilinger (GHZ) and W states and present the exact solutions for evolution dynamics of entanglement and quantum discord between three spins under both Markovian and non-Markovian regime of this classical noise. By comparison the dynamics of entanglement with that of quantum discord we find that entanglement can be more robust than quantum discord against this noise. It is shown that by considering non-Markovian extensions the survival time of correlations prolong. Also, we compare the results of two definitions of the quantum discord and show that the quantum dissension is equal to the global quantum discord for GHZ state, but they are unequal for the W state.  相似文献   

12.
Spherically symmetric static vacuum solutions have been built in f(T) models of gravity theory. We apply some conditions on the metric components; then new vacuum spherically symmetric solutions are obtained. Also, by extracting metric coefficients we determine the analytical form of f(T).  相似文献   

13.
We study the nonperturbative effects of the minimal length on the energy spectrum of a relativistic particle in the context of the generalized uncertainty principle (GUP). This form of GUP is consistent with various candidates of quantum gravity such as string theory, loop quantum gravity, and black-hole physics and predicts a minimum measurable length proportional to the Planck length. Using a recently proposed formally self-adjoint representation, we solve the generalized Dirac and Klein–Gordon equations in various situations and find the corresponding exact energy eigenvalues and eigenfunctions. We show that for the Dirac particle in a box, the number of the solutions renders to be finite as a manifestation of both the minimal length and the theory of relativity. For the case of the Dirac oscillator and the wave equations with scalar and vector linear potentials, we indicate that the solutions can be obtained in a more simpler manner through the self-adjoint representation. It is also shown that, in the ultrahigh frequency regime, the partition function and the thermodynamical variables of the Dirac oscillator can be expressed in a closed analytical form. The Lorentz violating nature of the GUP-corrected relativistic wave equations is discussed finally.  相似文献   

14.
《Nuclear Physics B》1988,306(4):908-930
We present a detailed study of the dynamics of and radiation from superconducting strings. We derive an approximate local action for a current-carrying vortex line and present some exact solutions to its equation of motion. These include stable static “springs” and oscillating “kinky” loops. For one of these “kinky” loops we are able to calculate the radiation exactly, and find (in contrast to previous work) the result is finite. We also argue that the non-local electromagnetic self-interaction of a loop causes the kinks to slowly straighten out. Finally, we discuss the loss of current at “cusp-like” regions and show that the shrinking of loops generally leads to current loss rather than gain.  相似文献   

15.
The chiral Gross–Neveu model or equivalently the linearized Bogoliubov–de Gennes equation has been mapped to the nonlinear Schrödinger (NLS) hierarchy in the Ablowitz–Kaup–Newell–Segur formalism by Correa, Dunne and Plyushchay. We derive the general expression for exact fermionic solutions for all gap functions in the arbitrary order of the NLS hierarchy. We also find that the energy spectrum of the n  -th NLS hierarchy generally has n+1n+1 gaps. As an illustration, we present the self-consistent two-complex-kink solution with four real parameters and two fermion bound states. The two kinks can be placed at any position and have phase shifts. When the two kinks are well separated, the fermion bound states are localized around each kink in most parameter region. When two kinks with phase shifts close to each other are placed at distance as short as possible, the both fermion bound states have two peaks at the two kinks, i.e., the delocalization of the bound states occurs.  相似文献   

16.
We obtain BPS configurations of the BLG theory and its variant including mass terms for scalars and fermions in addition to a background field with different world-volume and R-symmetries. Three cases are considered, with world-volume symmetries SO(1,1) and SO(2) and preserving different amounts of supersymmetry. In the former case we obtain a singular configuration preserving N=(3,3) supersymmetry and an one-quarter BPS configuration corresponding to intersecting M2-M5-M5-branes. In the latter instance the BPS equations are reduced to those in the self-dual Chern-Simons theory with two complex scalars. In want of an exact solution, we find a topological vortex solution numerically in this case. Other solutions are given by combinations of domain walls.  相似文献   

17.
Davood Momeni 《Physics letters. A》2019,383(14):1543-1548
We found exact solutions for canonical classical and quantum dynamics for general relativity in Horwitz general covariance theory. These solutions can be obtained by solving the generalized geodesic equation and Schrödinger-Stueckelberg-Horwitz-Piron (SHP) wave equation for a simple harmonic oscillator in the background of a two dimensional dilaton black hole spacetime metric. We proved the existence of an orthonormal basis of eigenfunctions for generalized wave equation. This basis functions form an orthogonal and normalized (orthonormal) basis for an appropriate Hilbert space. The energy spectrum has a mixed spectrum with one conserved momentum p according to a quantum number n. To find the ground state energy we used a variational method with appropriate boundary conditions. A set of mode decomposed wave functions and calculated for the Stueckelberg-Schrodinger equation on a general five dimensional blackhole spacetime in Hamilton gauge.  相似文献   

18.
19.
In this paper we investigate the constant volume exponential solutions (i.e. the solutions with the scale factors change exponentially over time so that the comoving volume remains the same) in the Einstein–Gauss–Bonnet gravity. We find conditions for these solutions to exist and show that they are compatible with any perfect fluid with the equation of state parameter \(\upomega <1/3\) if the matter density of the Universe exceeds some critical value. We write down some exact solutions which generalize ones found in our previous paper for models with a cosmological constant.  相似文献   

20.
We study the cosmological dynamics for R p exp(λ R) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its behaviour and stability for both vacuum and matter cases. It is found that stable solutions corresponding to accelerated expansion at late times exist, which can describe the inflationary era of the Universe. We also study the evolution of scale factors both in the normal and extra dimensions for different values of anisotropy parameter and the number of extra dimensions for such a scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号