首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
6,P-toluidinylnaphthalene-2-sulfonate (TNS) is a highly fluorescent molecule when dissolved in a low polarity medium or when bound to proteins. The aim of the present work is to explain origin of this fluorescence, to find out how the medium (solvent, protein matrix) affects fluorescence observables such as lifetimes and spectra and finally to put into evidence possible relation that exists between these observables and fluorophore structure. To achieve our goal we performed studies on TNS dissolved in ethanol, at high concentrations in water (aggregated form) and bound to proteins. Our experiments allowed us to find out that TNS in the three environments has different structures. Presence of three lifetimes observed in proteins and in water instead of one lifetime found in ethanol can be assigned to the high contact between TNS molecules. Our results are discussed in terms of solvent polarity and interaction within fluorophore molecules bound to proteins.  相似文献   

2.
We discuss a simple approach to enhance sensitivity for (13)C high-resolution solid-state NMR for proteins in microcrystals by reducing (1)H T(1) relaxation times with paramagnetic relaxation reagents. It was shown that (1)H T(1) values can be reduced from 0.4-0.8s to 60-70 ms for ubiquitin and lysozyme in D(2)O in the presence of 10 mM Cu(II)Na(2)EDTA without substantial degradation of the resolution in (13)C CPMAS spectra. Faster signal accumulation using the shorter (1)H T(1) attained by paramagnetic doping provided sensitivity enhancements of 1.4-2.9 for these proteins, reducing the experimental time for a given signal-to-noise ratio by a factor of 2.0-8.4. This approach presented here is likely to be applicable to various other proteins in order to enhance sensitivity in (13)C high-resolution solid-state NMR spectroscopy.  相似文献   

3.
Several methods are presented for the selective determination of spin-lattice and spin-spin relaxation rates of backbone protons in labeled proteins. The relaxation rates of amide protons in (15)N labeled proteins can be measured by using two-way selective cross-polarization (SCP). The measurement of H(alpha) relaxation rates can be achieved by combining this method with homonuclear Hartmann-Hahn transfer using doubly selective irradiation. Various schemes for selective or nonselective inversion of the longitudinal proton magnetization lead to different initial recovery rates. The methods have been applied to lysine K6 in (15)N-labeled human ubiquitin and to leucine L5 in (15)N- and (13)C-labeled octapeptide YG*G*F*LRRI (GFL) in which the marked residues are (15)N- and (13)C-labeled.  相似文献   

4.
A novel protein extraction method of ultrasound-assisted basic electrolyzed water (BEW) was proposed, and its effects on the structural and functional properties of Antarctic krill proteins were investigated. Results showed that BEW reduced 30.9% (w/w) NaOH consumption for the extraction of krill proteins, and its negative redox potential (−800 ~ −900 mV) protected the active groups (carbonyl, free sulfhydryl, etc.) of the proteins from oxidation compared to deionized water (DW). Moreover, the ultrasound-assisted BEW increased the extraction yield (9.4%), improved the solubility (8.5%), reduced the particle size (57 nm), favored the transition of α-helix and β-turn to β-sheet, promoted the surface hydrophobicity and disulfide bonds formation of krill proteins when compared to BEW without ultrasound. These changes contributed to the enhanced foam capacity, foam stability and emulsifying capacity of the krill proteins. Notably, all the physicochemical, structural and functional properties of the krill proteins were comparable to those extracted by the traditional ultrasound-assisted DW. This study suggests that the ultrasound-assisted BEW can be a potential candidate to extract proteins, especially offering an alternative way to produce marine proteins with high nutritional quality.  相似文献   

5.
Recent developments in the direct observation of J couplings across hydrogen bonds in proteins and nucleic acids provide additional information for structure and function studies of these molecules by NMR spectroscopy. A J(NN)-correlated [(15)N, (1)H] TROSY experiment proposed by Pervushin et al. (Proc. Natl. Acad. Sci. USA 95, 14147-14151, 1998) can be applied to measure (h)J(HN) in smaller nucleic acids in an E.COSY manner. However, it cannot be effectively applied to large nucleic acids, such as tRNA(Trp), since one of the peaks corresponding to a fast relaxing component will be too weak to be observed in the spectra of large molecules. In this Communication, we proposed a modified J(NN)-correlated [(15)N, (1)H] TROSY experiment which enables direct measurement of (h)J(HN) in large nucleic acids.  相似文献   

6.
Side-chain carbon resonance assignments are difficult to obtain for larger proteins. While standard methods require protons for excitation and detection of magnetization, their presence is often unacceptable and often leads to unacceptable relaxation losses at the directly bound carbon sites. In this paper, pulse sequences are presented which provide connectivities between aliphatic side-chain (13)C and amide (1)H and (15)N chemical shifts in fully deuterated, (13)C/(15)N-enriched proteins. Magnetization either starts off from carbons or from both nitrogens and protons and is passed along the side-chain via (13)C-(13)C isotropic mixing. Direct rather than (13)CO-relayed (15)N-->(13)C(alpha) or (13)C(alpha)-->(15)N transfer steps allow the detection of intraresidual as well as sequential correlations. To avoid ambiguities between these two types in the three-dimensional version of the experiments, a fourth dimension can be introduced to achieve their separation along a (13)C(alpha) frequency axis. The novel methods are demonstrated with the uniformly (2)H/(13)C/(15)N labeled 35-kDa protein diisopropylfluorophosphatase from Loligo vulgaris.  相似文献   

7.
Amino acid type-selective experiments can help to remove ambiguities in automated assignment procedures for (15)N/(13)C-labeled proteins. Here we present five triple-resonance experiments that yield amino acid type-selective (1)H-(15)N correlations for aromatic amino acids. Four of the novel experiments are based on the MUSIC coherence transfer scheme that replaces the initial INEPT transfer and is selective for CH(2). The MUSIC sequence is combined with selective excitation pulses to create experiments for Trp (W-HSQC) as well as Phe, Tyr, and His (FYH-HSQC). In addition, an experiment selective for Trp H(epsilon1)-N(epsilon1) is presented. The new experiments are recorded as two-dimensional experiments and their performance is demonstrated with the application to a protein domain of 115 amino acids.  相似文献   

8.
To develop avian influenza H5N1 recombinant protein, the hemagglutinin (HA), neuraminidase (NA), matrix (M), and non-structural (NS1) of avian influenza H5N1 isolates from Thailand were engineered to be expressed in prokaryotic (E. coli) and mammalian cell (COS-7) system. The plasmid pBAD-His and pSec-His were used as vectors for these inserted genes. Mice immunized with purified recombinant proteins at concentration 50–250 μg intramuscularly with Alum adjuvant at week 0, week 2, and week 3 showed a good immunogenicity measured by ELISA and neutralization assay. The HA and NS recombinant proteins produced in COS-7 cells can induce specific antibody titer detected by neutralization assay significantly higher than corresponding recombinant proteins produced in E. coli system. The antibody produced in immunized mice could neutralize heterologous avian influenza virus determined by micro-neutralization assay. This study shows that avian influenza virus H5N1 recombinant proteins produced in mammalian cell system were able to induce neutralizing antibody response.  相似文献   

9.
Initial steps in the development of a suite of triple-resonance (1)H/(13)C/(15)N solid-state NMR experiments applicable to aligned samples of (13)C and (15)N labeled proteins are described. The experiments take advantage of the opportunities for (13)C detection without the need for homonuclear (13)C/(13)C decoupling presented by samples with two different patterns of isotopic labeling. In one type of sample, the proteins are approximately 20% randomly labeled with (13)C in all backbone and side chain carbon sites and approximately 100% uniformly (15)N labeled in all nitrogen sites; in the second type of sample, the peptides and proteins are (13)C labeled at only the alpha-carbon and (15)N labeled at the amide nitrogen of a few residues. The requirement for homonuclear (13)C/(13)C decoupling while detecting (13)C signals is avoided in the first case because of the low probability of any two (13)C nuclei being bonded to each other; in the second case, the labeled (13)C(alpha) sites are separated by at least three bonds in the polypeptide chain. The experiments enable the measurement of the (13)C chemical shift and (1)H-(13)C and (15)N-(13)C heteronuclear dipolar coupling frequencies associated with the (13)C(alpha) and (13)C' backbone sites, which provide orientation constraints complementary to those derived from the (15)N labeled amide backbone sites. (13)C/(13)C spin-exchange experiments identify proximate carbon sites. The ability to measure (13)C-(15)N dipolar coupling frequencies and correlate (13)C and (15)N resonances provides a mechanism for making backbone resonance assignments. Three-dimensional combinations of these experiments ensure that the resolution, assignment, and measurement of orientationally dependent frequencies can be extended to larger proteins. Moreover, measurements of the (13)C chemical shift and (1)H-(13)C heteronuclear dipolar coupling frequencies for nearly all side chain sites enable the complete three-dimensional structures of proteins to be determined with this approach.  相似文献   

10.
{(Eu(PW11)2)m/PEI}多层纳米复合膜的制备和光谱表征   总被引:1,自引:0,他引:1  
在科技竞争日益激烈的今天,功能性分子材料的设计和获得是科学界面临的主要挑战之一.多金属氧酸盐因其具有特定的结构和优越的光、电和磁等物理化学性质,已经成为构造新型功能材料的重要无机构筑块.借助于分子间弱的相互作用将多金属氧酸盐引入到纳米复合薄膜材料中,利用无机和有机组分的协同作用来诱导和产生新的功能特性,必定会给这种无机构筑块在材料科学中的应用创造更多的机会.静电沉积技术是制备有机一无机超薄膜的一种有效方法,人们已经成功地实现了各种无机材料的组装,它们在非线形光学、导电膜、电致发光器件和传感器等方面有着潜在的应用前景.利用层层自组装法(layer bylayer self assembly,LBL),制备出有序且稳定的多金属氧酸盐Eu(PW111)2的多层膜.应用紫外光谱研究其层层组装过程,观察到层层组装是一个均一过程.荧光光谱研究表明所制备的含稀土多金属氧酸盐阴离子的多层膜,通过调节膜的厚度、组成和结构,多层膜具有Eu3 的特征发射.这一结果为发光器件的发展提供了丰富的数据.  相似文献   

11.
在将TEMPO掺入肿瘤细胞用以研究化学诱导分化剂六亚甲基二乙酰胺(HMBA)诱导分化机理的实验中,观察到一种强的单峰波谱,TEMPO掺入到了蛋白质分子的内部可能形成了局部的高浓度.肿瘤细胞诱导分化剂HMBA在诱导浓度范围内可使一些蛋白质分子的构象发生变化,改变TEMPO与蛋白质分子的结合.因此,HMBA在诱导肿瘤细胞分化的过程中,一定对一些蛋白质分子有直接的作用.  相似文献   

12.
Polyphenols find wide use as antioxidants, cancer chemopreventive agents and metal chelators. The latter activity has proved interesting in many aspects. We have probed the binding characteristics of the polyphenol quercetin–Cu(II) complex with human serum albumin (HSA) and bovine serum albumin (BSA). Fluorescence studies reveal that the quercetin–Cu(II) complex can quench the fluorescence of the serum albumins. The binding constant (Kb) values are of the order of 105 M?1 which increased with rise in temperature in case of HSA and BSA interacting with the quercetin–Cu(II) complex. Displacement studies reveal that both the ligands bind to site 1 (subdomain IIA) of the serum albumins. However, thermodynamic parameters calculated from temperature dependent studies indicated that the mode of interaction of the complexes with the proteins differs. Both ΔH° and ΔS° were positive for the interaction of the quercetin–Cu(II) complex with both proteins but the value of ΔH° was negative in case of the interaction of quercetin with the proteins. This implies that after chelation with metal ions, the polyphenol alters its mode of interaction which could have varying implications on its other physicochemical activities.  相似文献   

13.
傅日强 《波谱学杂志》2009,26(4):437-456
有序样品的固体核磁共振(NMR)已快速发展成测定蛋白质和多肽在“仿真”水化磷脂层中高分辨结构的重要谱学方法. 由于与膜相连的蛋白质和多肽的结构、动力学和功能往往都和其周边自然环境密切相关,因此人们把蛋白质和多肽有序排列于水化磷脂层中进行固体NMR测量, 从而获得与取向相关的各向异性自旋相互作用. 这些取向约束可作为结构参数重构蛋白质在水化磷脂层中的高分辨三维结构. 近十年来在样品制备,NMR探头和实验方法方面的显著发展,极大地促进了有序样品的固体NMR的发展,并使之成为测定与膜相连的蛋白质和多肽结构的有效方法. 该综述介绍有序样品的固体NMR谱学方法,并总结此领域里的最新研究进展.  相似文献   

14.
Thin films of lysozyme and myoglobin grown by matrix assisted pulsed laser evaporation (MAPLE) from a water ice matrix have been investigated. The deposition rate of these two low molecular weight proteins (lysozyme: 14307 amu and myoglobin: 17083 amu) exhibits a maximum of about 1–2 ng/cm2 per pulse at a fluence of 1–2 J/cm2 and decreases slowly with increasing fluence. This rate is presumably determined by the matrix rather by the proteins. A significant fraction of the proteins are intact in the film as determined by MALDI (Matrix assisted laser desorption ionization) spectrometry. The results for lysozyme demonstrate that the fragmentation rate of the proteins during the MAPLE process is not influenced by the pH of the water solution prior to freezing.  相似文献   

15.
16.
用核磁共振方法研究金属离子与蛋白质的相互作用   总被引:2,自引:1,他引:1  
张芳  林东海 《波谱学杂志》2009,26(1):136-149
许多蛋白质含有金属离子,金属离子对蛋白质发挥生物学功能起着很大的作用. 金属离子与蛋白质的相互作用以及参与蛋白质功能调节的方式各种各样:有些金属离子高度专一性地与蛋白质紧密结合,对蛋白质发挥生物学功能起着关键性的作用;有些金属离子只是作为蛋白质发挥功能的辅助因子而瞬态地与蛋白质松散结合. 本文简要介绍目前国际上用NMR方法研究抗磁金属离子和顺磁金属离子与蛋白质相互作用的进展,并具体介绍了NMR方法在钙调蛋白、锌指蛋白、朊病毒蛋白等金属离子蛋白研究上的应用.  相似文献   

17.

Background  

Metabotropic glutamate receptors (mGluRs) regulate neuronal excitability and synaptic strength. The group I mGluRs, mGluR1 and 5, are widespread in the brain and localize to post-synaptic sites. The Homer protein family regulates group I mGluR function and distribution. Constitutively expressed 'long' Homer proteins (Homer 1b, 1c, 2 and 3) induce dendritic localization of group I mGluRs and receptor clustering, either internally or on the plasma membrane. Short Homer proteins (Homer 1a, Ania-3) exhibit regulated expression and act as dominant negatives, producing effects on mGluR distribution and function that oppose those of the long Homer proteins.  相似文献   

18.
Chemical-shift-selective (13C, 13C) polarization transfer is analyzed in uniformly labeled biomolecules. It is shown that the spin system dynamics remain sensitive to the distance of interest and can be well reproduced within a quantum-mechanical multiple-spin analysis. These results lead to a general approach on how to describe chemical-shift-selective transfer in uniformly labeled systems. As demonstrated in the case of ubiquitin, this methodology can be used to detect long-range distance constraints in uniformly labeled proteins.  相似文献   

19.
Corrected fluorescence excitation and emission spectra have been obtained from several enhanced variants of the green fluorescent protein (EGFP) isolated from the jellyfish Aequorea victoria, blue fluorescence protein (EBFP), cyan fluorescent protein (ECFP), EGFP and yellow fluorescent protein (EYFP–citrine) and from the red fluorescent protein (DsRed) isolated from the coral species Discosoma. The spectra are stored in a database. This report describes how the spectra can be used as templates to derive the critical transfer distance for any pair of fluorescent proteins.  相似文献   

20.
We describe an approach to efficiently determine the backbone conformation of solid proteins that utilizes selective and extensive (13)C labeling in conjunction with two-dimensional magic-angle-spinning NMR. The selective (13)C labeling approach aims to reduce line broadening and other multispin complications encountered in solid-state NMR of uniformly labeled proteins while still enhancing the sensitivity of NMR spectra. It is achieved by using specifically labeled glucose or glycerol as the sole carbon source in the protein expression medium. For amino acids synthesized in the linear part of the biosynthetic pathways, [1-(13)C]glucose preferentially labels the ends of the side chains, while [2-(13)C]glycerol labels the C(alpha) of these residues. Amino acids produced from the citric-acid cycle are labeled in a more complex manner. Information on the secondary structure of such a labeled protein was obtained by measuring multiple backbone torsion angles phi; simultaneously, using an isotropic-anisotropic 2D correlation technique, the HNCH experiment. Initial experiments for resonance assignment of a selectively (13)C labeled protein were performed using (15)N-(13)C 2D correlation spectroscopy. From the time dependence of the (15)N-(13)C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. We demonstrate the selective (13)C labeling and these 2D NMR experiments on a 8.5-kDa model protein, ubiquitin. This isotope-edited NMR approach is expected to facilitate the structure determination of proteins in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号