首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of controlling the aerodynamic characteristics of airfoils in transonic flight regimes by means of local pulsed periodic energy supply is considered. The numerical solution of two-dimensional unsteady equations of gas dynamics allowed determining the changes in the flow structure near a symmetric airfoil and its aerodynamic characteristics depending on the magnitude of energy in the case of its asymmetric (with respect to the airfoil) supply. The results obtained are compared with the calculated data for the flow around the airfoil at different angles of attack without energy supply. With the use of energy supply, a prescribed lift force can be obtained with a substantially lower wave drag of the airfoil, as compared with the flow around the airfoil at an angle of attack. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 6, pp. 70–76, November–December, 2007.  相似文献   

2.
Changes in the structure of a transonic flow around a symmetric airfoil and a decrease in the wave drag of the latter, depending on the energy-supply period and on localization and shape of the energy-supply zone, are considered by means of the numerical solution of two-dimensional unsteady equations of gas dynamics. Energy addition to the gas ahead of the closing shock wave in an immediate vicinity of the contour in zones extended along the contour is found to significantly reduce the wave drag of the airfoil. The nature of this decrease in drag is clarified. The existence of a limiting frequency of energy supply is found. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 64–71, May–June, 2006.  相似文献   

3.
The aerodynamic characteristics of cone-sphere models are studied at Mach numbers M = 6, 8.4, and 12 to 13 over a wide Reynolds number range. Models of a braking device (sphere) were connected with a load (frustum of a cone) by means of shrouds. The dependences of the aerodynamic coefficients C x and C y on the angle of attack α were obtained for different relative dimensions of the load and the braking device, shroud lengths, and Mach and Reynolds numbers. The effect of the above-mentioned parameters on the aerodynamic characteristics of the models is analyzed. The C x (ReD) dependences of load-parachutemodels in a symmetric flow are determined over the wide Mach and Reynolds number ranges 6 ≤ M ≤ 13 and 3 · 103 ≤ ReD ≤ 3 · 106.  相似文献   

4.
Results of numerical simulations of a quasi-one-dimensional unsteady flow in a channel considered as an element of an air-breathing engine are presented. The influence of parameters of energy supplied in the pulsed-periodic mode (power, pulse frequency, and distribution of energy sources along the channel) on the characteristics of the flow with Mach numbers M 0 = 2.4–4.0 at the channel entrance is determined. A channel configuration that allows the energy supply distribution to be found from the condition of restriction of the maximum value of the gas temperature is proposed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 1, pp. 3–11, January–February, 2009.  相似文献   

5.
The transonic flowfields and vortex-breakdown over a slender wing with the angle of attack from 10° to 28° are studied numerically, and the emphasis is on the secondary separation and the charateristics of vortex-breakdown. The results indicated that: (a) TVD schemes have strong capability for capturing vortices in three-dimensional transonic separated flow at large angle of attack. (b) The development of secondary vortices is more complex than that of leading-edge ones, and is affected by wing's configuration, angle of attack and compressibility simultaneously, and the effect of compressibility is more severe at low angle of attack. (c) The starting angle of attack for vortex-breakdown (when vortex bursting point crosses trailing-edge) is about 18° forM∞=0.85, then the bursting point moves upstream quickly with increasing angle of attack. (d) At α=24°, breakdown occurs over most part of upper side, and the wing begins to stall. Therefore, there is a large lag of angle of attack between the beginning of vortex-breakdown and the stall of the wing. (e) This lag increase with the decreasing of Mach number.  相似文献   

6.
An implicit upwind finite volume solver for the Euler equations using the improved flux-splitting method is established and used to calculate the transonic flow past the airfoils with heaving, pitching oscillations and the control surface. Results are given for the NACA64A-10 airfoil which is in harmonic heaving and pitching oscillation and with the control surface in the transonic flow field. Some computational results are compared with the experiment data and the good agreements are shown in the paper.  相似文献   

7.
Formulas for all the components of the aerodynamic drag (total, friction, inductive, wave, pressure, and heat-transfer) are uniformly derived as applied to flows governed by the Navier-Stokes and Reynolds equations. For flows of this type the definition of the aerodynamic drag components is refined and the physical basis of the chosen method of breaking up the total drag into components is discussed. Ways of calculating the aerodynamic drag components using the methods of computational aerodynamics are considered. On the basis of the refined formulas the drag components are calculated for flows around airfoils and a high-aspect-ratio wing in transonic flow.  相似文献   

8.
The results of a numerical simulation of the unsteady flow in a variable-area channel with a pulsed-periodic supply of external thermal energy in local zones are presented. It is shown that in the case in which the amount of energy supplied is less than that required for thermal choking of the channel the original supersonic flow restructures itself in such a way that in the vicinity of the channel inlet a normal shock is formed and the energy is subsequently supplied a subsonic flow velocity.  相似文献   

9.
利用光固化快速成型技术加工了内部金属骨架、外部光敏树脂外形的弹性轻质AGARD-B模型.采用气动与结构并发分析方法对其跨声速气动特性进行了初步研究,完成了风洞验证实验.研究结果表明:在马赫数0.6和1.2、较小攻角(α≤4°)的条件下,弹性轻质模型气动力特性与金属模型基本吻合;较大攻角(α>4°)条件下,因弹性轻质模型刚度比全金属模型小,试验过程中受气动载荷作用,特别是升力的影响,结构机翼变形较大,导致气动力特性与全金属模型差异较大,故气动力系数需要进行弹性变形修正.初步实验结果指出:在跨声速范围内,弹性轻质模型可直接用于气动布局选型设计与研究、基本状态等研究;但同时弹性轻质模型刚度不足,易变形.  相似文献   

10.
高超声速非定常流动的数值模拟与气动热计算   总被引:2,自引:0,他引:2  
高超声速飞行器研究中的一个重点问题是飞行器表面的气动加热,它对飞行器的气动、热特性及安全性有重要的影响.受到当前实验技术的限制,地面实验无法准确模拟真实飞行条件,所以采用数值模拟研究气动加热问题成为目前重要的研究手段.本文采用数值方法求解三维N-S方程,得到钝头体再入模型绕流的瞬态流场,驻点温度及表面热流沿轨道变化规律.计算中采用变边界条件模拟沿轨道飞行的非定常性.  相似文献   

11.
This paper presents an efficient numerical method for solving the unsteady Euler equations on stationary rectilinear grids. Boundary conditions on the surface of an airfoil are implemented by using their first-order expansions on the mean chord line. The method is not restricted to flows with small disturbances since there are no restrictions on the mean angle of attack of the airfoil. The mathematical formulation and the numerical implementation of the wall boundary conditions in a fully implicit time-accurate finite-volume Euler scheme are described. Unsteady transonic flows about an oscillating NACA 0012 airfoil are calculated. Computational results compare well with Euler solutions by the full boundary conditions on a body-fitted curvilinear grid and published experimental data. This study establishes the feasibility for computing unsteady fluid-structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in saving computer time and program design since it does not require the generation and implementation of time-dependent body-fitted grids.  相似文献   

12.
ANIMPLICTALGORITHMOFTHINLAYEREQUATIONSiNVISCOUS,TRANSONIC,TWO-PHASENOZZLEFLOWHeHong-qing(何洪庆)HouXiao(侯晓)CaiTi-min(蔡体敏)WuXing-...  相似文献   

13.
The influence of local pulsed-periodic addition of energy into a supersonic region on the flow structure and wave drag of an airfoil in transonic flow regimes is considered by methods of mathematical modeling. The study reveals significant prospects of the considered method of controlling airfoil performance in transonic flow regimes, including wave-drag reduction.  相似文献   

14.
The results of an experimental study of the transonic flow behind the trailing corner edges of oversized cone-cylinder bodies of different dimensions are presented. Emphasis is placed on the induced transonic flow restructuring and the local aerodynamic forces accompanying the process, both steady and unsteady. The restructuring that occurs with increase in the freestream Mach number is studied.  相似文献   

15.
An improved hybrid method for computing unsteady compressible viscous flows is presented. This method divides the computational domain into two zones. In the inner zone, the Navier–Stokes equations are solved using a diagonal form of an alternating‐direction implicit (ADI) approximate factorisation procedure. In the outer zone, the unsteady full‐potential equation (FPE) is solved. The two zones are tightly coupled so that steady and unsteady flows may be efficiently solved. Characteristic‐based viscous/inviscid interface boundary conditions are employed to avoid spurious reflections at that interface. The resulting CPU times are about 60% of the full Navier–Stokes CPU times for unsteady flows in non‐vector processing machines. Applications of the method are presented for a F‐5 wing in steady and unsteady transonic flows. Steady surface pressures are in very good agreement with experimental data and are essentially identical to the full Navier–Stokes predictions. Density contours show that shocks cross the viscous/inviscid interface smoothly, so that the accuracy of full Navier–Stokes equations can be retained with significant savings in computational time. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
相对弯度对低雷诺数流动中翼型动态气动力特性的影响   总被引:2,自引:0,他引:2  
以固定翼微型飞行器为研究背景,研究了相对弯度对低雷诺数流动中翼型动态气动力特性的影响规律。采用Roe迎风差分格式和双时间步迭代方法,数值求解拟压缩性修正不可压Navier-Stokes方程组,给出了数值算法与实验数据的对比验证。以翼型弦长为特征长度,在Re=500~50000情况下,选取不同最大相对弯度和不同最大相对弯度位置的翼型,计算了其等速上仰时的动态气动力,结果表明后者对气动力的影响比较显著,把最大弯度位置布置在翼型弦向40%的地方要比布置在30%和50%两处所获得的动态升阻比大。  相似文献   

17.
The influence of molecular (thermodynamic and transport) properties of air on gas-dynamic effects of pulsed-periodic energy supply in a transonic flow around airfoils is studied. Relations for air with allowance for excitation of vibrations and dissociation are taken as the thermal equation of state and the caloric equation. The influence of the transport properties (viscosity) is taken into account approximately, within the framework of the boundary layer model. It is demonstrated that the effects in qualitative considerations do not depend on taking into account the molecular properties, but the allowance for internal degrees of freedom yields a significantly lower temperature than the temperature predicted by the ideal gas model. Allowance for viscosity ensures certain attenuation of the energy supply effects.  相似文献   

18.
A numerical investigation of the structure of the vortical flowfield over delta wings at high angles of attack in longitudinal and with small sideslip angle is presented. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics that are dominated by the effect of the breakdown of the leading-edge vortices. The methods that analyze the flowfield structure quantitatively were given by using flowfield data from the computational results. In the region before the vortex breakdown, the vortex axes are approximated as being straight line. As the angle of attack increases, the vortex axes are closer to the root chord, and farther away from the wing surface. Along the vortex axes, as the adverse pressure gradients occur, the axial velocity decreases, that is, A is negativee, so the vortex is unstable, and it is possible to breakdown. The occurrence of the breakdown results in the instability of lateral motion for a delta wing, and the lateral moment diverges after a small perturbation occurs at high angles of attack. However, after a critical angle of attack is reached the vortices breakdown completely at the wing apex, and the instability resulting from the vortex breakdown disappears.  相似文献   

19.
为抑制跨超声速风洞扩散段的分离,提出了一种较为完备的设计方法。由于影响扩散段性能的参数较多,完全通过试验方法进行设计的成本过高,该方法通过数值模拟,结合适当的边界条件,详细描述了扩散段角度、分流锥角度与长度、孔板开孔率对扩散段性能的影响;从数值模拟的结果可以看出,孔板开孔率和扩开角对扩散段性能有显著影响,通过比较得出较为合理的参数匹配,提高了扩散段的防分离性能,并改善了出口气流质量。数值结果与试验结果结论一致,表明本文所用的方法用于扩散段气动设计是可行的,为数值模拟方法应用于风洞部段气动设计创造了一定的条件。  相似文献   

20.
UNCONDITIONALSTABLESOLUTIONSOFTHEEULEREQUATIONSFORTWO-ANDTHREE-DWINGSINARBITRARYMOTIONGaoZhenghong(高正红)(ReceivedJan.12,1995,C...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号