首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characteristics of photoelectron spectrum of Au2− and Au4− clusters were calculated using different functionals and basis sets, and the results were compared with experimental data. The TD-B3LYP/LANL2Z method was shown to provide for calculation of these characteristics with good accuracy. Based on these results we suggested the methods and carried out appropriate calculations of the absorption and emission for different isomers of Au8 clusters. It was shown that the best agreement with the experimental data is observed for the planar C2ν “hexagon+1” structure, therefore, this is the structure observed experimentally. The calculated value of the Stokes shift for the specified structure does not exceed 12 nm, which is also in good agreement with experimental results.  相似文献   

2.
苯并噻二嗪衍生物电子结构和非线性光学性质的研究   总被引:3,自引:3,他引:3  
运用量子化学PM3方法,对苯并噻二嗪几种衍生物的几何构型、电子结构和前线分子轨道成分进行了分析,研究了电荷分布规律。同时,基于体系中电子转移的特点,利用有限场FF方法探讨了其非线性光学性质的变化。结果表明,苯并噻二嗪分子具有较好的二阶非线性光学性质,并可能成为一类良好的光学材料。  相似文献   

3.
运用量子化学半经验方法对1,2,4-苯并噻二嗪-1,1二氧类化合物的8种取代衍生物进行了量子化学计算,从体系能量、几何构型、电子结构、前线分子轨道等几方面分析了吸电子基-CN,-NO2等取代后体系的电子性质变化规律.结果表明:随着取代基吸电子能力的增强,体系的活性增强,可为药物合成提供一定的理论指导.  相似文献   

4.
The structural, electronic, bonding, magnetic, and optical properties of bimetallic [Cu(n)Ru(m)](+/0/-) (n + m ≤ 3; n, m = 0-3) clusters were computed in the framework of the density functional theory (DFT) and time-dependent DFT (TD-DFT) using the full-range PBE0 nonlocal hybrid GGA functional combined with the Def2-QZVPP basis sets. Several low-lying states have been investigated and the stability of the ground state spinomers was estimated with respect to all possible fragmentation schemes. Molecular orbital and population analysis schemes along with computed electronic parameters illustrated the details of the bonding mechanisms in the [Cu(n Ru(m)](+/0/-) clusters. The TD-DFT computed UV-visible absorption spectra of the bimetallic clusters have been fully analyzed and assignments of all principal electronic transitions were made and interpreted in terms of contribution from specific molecular orbital excitations.  相似文献   

5.
张天莉  严继民 《化学学报》2000,58(8):981-987
利用AM1方法计算多种酞菁不对称取代物的电子结构与非线性光学特性,并探讨它们之间的关系。结果表明偶极矩μ,能级差△E~D~A,电荷转移△Q~D~A与二阶非线性光学系数β之间都存在一定的规律性,其中μ与β和△E~D~A与β之间的关系较为明显,并有相似趋势。  相似文献   

6.
A set of all-electron scalar relativistic calculations on Au n Cu (n = 1–12) clusters has been performed using density functional theory with the generalized gradient approximation at PW91 level. The lowest energy geometries of Au n Cu clusters may be considered as assemblies of triangular Au3 moieties substituted with one Cu atom at the highest coordinated site. All these lowest energy geometries of the Au n Cu clusters are slightly distorted but retain the planar structures of the Au n+1 clusters due to the strong scalar relativistic effects. The Au–Cu bonds are stronger, and a few Au–Au bonds far from the Cu atom are weaker, than the corresponding Au–Au bonds in pure Au n+1 clusters. After doping with a Cu atom, the thermodynamic stability and chemical reactivity are enhanced to some extent. The odd-numbered Au n Cu clusters with even numbers of valence electrons are more stable than the neighboring even-numbered Au n Cu clusters with odd numbers of valence electrons. Odd–even alternations of magnetic moments and electronic configurations for the Au n Cu clusters can be observed clearly and may be understood in terms of the electron pairing effect.  相似文献   

7.
Geometric structures and electronic properties of small beryllium clusters (Be(n), 2< or = n< or =9) are investigated within the gradient-corrected density functional theory. The computations are performed with the Becke exchange and Perdew-Wang correlation functionals. Both low and high multiplicity states are considered. A predominance of higher multiplicity states among the low-energy isomers of the larger clusters is found. An analysis of the variations in the structural and electronic properties with cluster size is presented, and the results are compared with those of earlier studies.  相似文献   

8.
采用量子化学PM3方法优化得到二联吡啶及四种二氮取代衍生物的稳定结构,利用ZINDO-SOS∥PM3方法对它们的二阶和三阶非线性光学性质进行计算.结果表明,该类化合物具有良好的非线性光学性质,其中1,6,1′,6′-四氮取代联苯的β值最大,为73 2082C·m,而2,4,2′,4′-四氮取代联苯的三阶非线性光学性质最显著.  相似文献   

9.
First-principle density functional theory is used for studying the anion gold clusters doped with magnesium atom. By performing geometry optimizations, the equilibrium geometries, relative stabilities, and electronic and magnetic properties of [Au(n)Mg]? (n = 1-8) clusters have been investigated systematically in comparison with pure gold clusters. The results show that doping with a single Mg atom dramatically affects the geometries of the ground-state Au(n+1)? clusters for n = 2-7. Here, the relative stabilities are investigated in terms of the calculated fragmentation energies, second-order difference of energies, and highest occupied?lowest unoccupied molecular orbital energy gaps, manifesting that the ground-state [Au(n)Mg]? and Au(n+1)? clusters with odd-number gold atoms have a higher relative stability. In particular, it should be noted that the [Au?Mg]? cluster has the most enhanced chemical stability. The natural population analysis reveals that the charges in [Au(n)Mg]? (n = 2-8) clusters transfer from the Mg atom to the Au frames. In addition, the total magnetic moments of [Au(n)Mg]? clusters exhibit an odd-even oscillation as a function of cluster size, and the magnetic effects mainly come from the Au atoms.  相似文献   

10.
Theoretical study on the structure and electronic properties of small AgmNip (m + p < or = 6) clusters has been carried out in the framework of density functional theory. Structural features, cohesive energies, vertical ionization potentials, and charge transfers are evaluated for each Ag/Ni ratio. In all the AgmNip clusters, the nickel atoms are brought together, yielding a maximum of Ni-Ni bonds, and the silver atoms are located around a Ni core with a maximum of Ag-Ni bonds. The ionization potential and the highest occupied molecular orbital shape are directly related to the two- or three-dimensional character of the cluster's geometry. A very low electronic charge transfer from Ni to Ag is found, and the magnetic moment is located on Ni atoms but with a low spin polarization on silver in the Ni-rich clusters.  相似文献   

11.
We present theoretical results of size dependent structural, electronic, and optical properties of ligand‐free stoichiometric AlnAsn clusters of zinc‐blende modification. The investigation is done using a simplified parametrized linear combination of atomic orbital–density functional theory‐local density approximation–tight‐binding (LCAO–DFT–LDA–TB) method and consider clusters with n up to around 100. Initial structures have assumed as spherical parts of infinite zinc‐blende structure and then allowed to relax to the closest local‐energy‐minimum structure. We analyze the radial distributions of atoms, Mulliken populations, electronic energy levels (in particular, HOMO and LUMO), bandgap, and stability as a function of size and composition. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

12.
Electronic spectrum of organoimide derivatives of hexamolybdates have first been calculated within the time-dependent density-functional theory in conjunction with Van Leeuwen-Baerends (LB94) exchange correlation potential, statistical average of orbital potentials (SAOP), and gradient-regulated connection potential (GRAC), respectively. The GRAC yields much better agreement with experiments for the excitation energies comparing with both LB94 and SAOP. The analysis of transition nature indicates that there is a significant difference between the diagonal and the orthogonal substituted derivatives. The static and dynamic third-order polarizabilities are calculated using time-dependent density-functional theory combined with the sum-over-states method. The results show that these derivatives possess remarkable large molecular third-order polarizabilities, especially for system 8 with -17882.6 x 10(-36) esu. This value is about 250 times that for the C(60) molecule. Adding the organoimide segment to the [Mo(6)O(19)](2-) can substantially increase the nu value. This variation can be traced to the different electronic transition characteristics between the derivatives of [Mo(6)O(19)](2-) and [Mo(6)O(19)](2-). For our studied systems, increasing the conjugation length and diagonal substituted are efficient ways to enhance the third-order polarizability. Thus, the organoimide derivatives of hexamolybdates may comprise a new promising class of nonlinear optical materials from the standpoint of large values, small dispersion behavior, and high transparency.  相似文献   

13.
The equilibrium geometries of four asymmetric spirosilabifluorene derivatives are optimized by means of the DFT/B3LYP method with the 6-31G* basis sets in this paper. On the basis of the optimized structures, the electronic structure and second-order nonlinear optical properties are calculated by using time-dependent density-functional theory (TDDFT) based on the 6-31G* level combined with the sum-over-states (SOS) method. The results show that these compounds possess remarkably larger molecular second-order polarizabilities than typical organometallic and organic compounds, and replacement of a carbon atom with nitrogen within the conjugated substituent has a great influence on the second-order nonlinear optical properties. Analysis of the main contributions to the second-order polarizability suggests that charge transfer from the z-axis directions plays a key role in the nonlinear optical response. These compounds have a possibility to be excellent second-order nonlinear optical (NLO) materials from the standpoint of large beta values, small dipole moment, high transparency, and small dispersion behaviors.  相似文献   

14.
The structural evolution and bonding of a series of early transition-metal oxide clusters, V(n)O(q) (n = 3-9, q = 0,-1), have been investigated with the aid of previous photoelectron spectroscopy (PES) and theoretical calculations. For each vanadium monoxide cluster, many low-lying isomers are generated using the Saunders "Kick" global minimum stochastic search method. Theoretical electron detachment energies (both vertical and adiabatic) were compared with the experimental measurements to verify the ground states of the vanadium monoxide clusters obtained from the DFT calculations. The results demonstrate that the combination of photoelectron spectroscopy experiments and DFT calculation is not only powerful for obtaining the electronic and atomic structures of size-selected clusters, but also valuable in resolving structurally and energetically close isomers. The second difference energies and adsorption energies as a function of the cluster size exhibit a pronounced even-odd alternation phenomenon. The adsorption energies of one O atom on the anionic (6.64 → 8.16 eV) and neutral (6.41 → 8.13 eV) host vanadium clusters are shown to be surprisingly high, suggesting strong capabilities to activate O by structural defects in vanadium oxides.  相似文献   

15.
The structures and stabilities of gold clusters with up to 14 atoms have been determined by density-functional theory. The structure optimizations and frequency analysis are performed with the Perdew-Wang 1991 gradient-corrected functional combined with the effective core potential and corresponding valence basis set (LANL2DZ). The turnover point from two-dimensional to three-dimensional geometry for gold clusters occurs at Au12. The energetic and electronic properties of the small gold clusters are strongly dependent on sizes and structures, which are in good agreement with experiment and other theoretical calculations. The even-odd oscillation in cluster stability and electronic properties predicted that the clusters with even numbers of atoms were more stable than the neighboring clusters with odd numbers of atoms. The stability and electronic structure properties of gold clusters are also characterized by the maximum hardness principle of chemical reactivity and minimum polarizability principle.  相似文献   

16.
Russian Journal of Organic Chemistry - Maleimides containing dithienylethene and azobenzene fragments have been synthesized by reaction of dithienyl-substituted maleic anhydrides with...  相似文献   

17.
The static and dynamical polarizabilities of the Hg-dimer are calculated by using a Hubbard Hamiltonian to describe the electronic structure. The Hamiltonian is diagonalized exactly within a subspace of second-quantized electronic states from which only multiply ionized atomic configurations have been excluded. With this approximation we can describe the most important electronic transitions including the effect of charge fluctuations. We analyze the polarizability as a function of the intraatomic Coulomb interaction which represents the repulsion between electrons. We obtain that this interaction results in strong electronic correlations in the excited states and increases the first excitation energy of the dimer by 0.8 eV in comparison to a calculation which neglects correlations, resulting in a better agreement with the experiment.  相似文献   

18.
The structural and electronic properties of nine derivatives of the N3 complex (cis-[Ru(4,4'-COOH-2,2'-bpy)2(NCS)2]) have been studied, using density functional theory (DFT) at a hybrid (PBE0) level, with the aim of finding a systematic way to improve their spectral absorption in the visible region for photoelectrochemical applications. To this end, by means of time dependent-DFT (TD-DFT) calculations, excited states were investigated in solution to simulate UV-vis spectra. Several effects have been taken into account: the effect of the presence and deprotonation of the carboxylic groups as well as the variation of the chalcogen within the NCX ligand (X=S, Se, or Te). Besides the excellent agreement between theoretical and available experimental data, with regards to potential future experimental applications of the investigated complexes, from the calculations, the cis-Ru(dcbpyH2)(NCSe)2 may appear as a good candidate to enhance the response of the N3 dye to light, even if only slightly.  相似文献   

19.
The application of polyfluorenes in polymeric light-emitting diodes has been hampered because of the charge injection difficulties and the troublesome formation of a tailed emission band at long wavelengths (>500 nm) during device fabrication and operation, leading to both a color instability and reduced efficiency. The incorporation of the phenothiazine units has been proven to significantly enhance the hole injection and charge carrier balance and at the same time efficiently suppress the keto defect emission. In this contribution, we apply quantum-chemical techniques to investigate poly[10-(N-(2'-methyl)phenothiazine-3,7-diyl) and its fluorene copolymer poly[10-(N-(2'-methyl)phenothiazine-3,7-diyl)-co-alt-2,7-(9,9-dimethylfluorene)] (PFPTZ) and gain a detailed understanding the influence of phenothiazine units on the electronic and optical properties of fluorene derivatives. Density functional theory (DFT) and time-dependent DFT approaches are employed to study the neutral molecules, HOMO-LUMO gaps (Delta(H-L)), the lowest excitation energies (E(g)'s), positive and negative ions, as well as the IPs and EAs, focusing on the superiority of the electronic and optical properties attributed to the introduction of electron-donating moiety phenothiazine (PTZ) through comparing with pristine polyfluorene. The outcomes show that the highly nonplanar conformation of phenothiazine ring in the ground state preclude sufficiently close intermolecular interactions essential to forming aggregates or excimers. Furthermore, the HOMO energies lift about 0.4 eV, and thus, the IPs decrease about 0.3 eV in PFPTZ, suggesting the significant improved hole-accepting and transporting abilities, due to the electron-donating properties of phenothiazine ring by the presence of electron-rich sulfur and nitrogen heteroatoms and highly nonplanar characters, resulting in the enhanced performances in both efficiency and brightness compared with pristine polyfluorene. In addition, even though the introduction of electron-donating moiety PTZ onto fluorene leads to a slight bathochromic shift in absorption and emission spectra, the copolymer still exhibited strong blue emission.  相似文献   

20.
Spin trapping of hydroperoxyl radical (HOO·) by the amide-linked conjugate of 5-carbamoyl-5-methyl-1-pyrroline N-oxide (AMPO) to β-cyclodextrin (β-CD) was studied computationally using a two-layered ONIOM method. From a conformational perspective, the “internal” conformation of 5R-β-CD-AMPO is more favored than the “external” conformation in which the nitrone is located outside of the cavity of the β-CD. When the HOO· addition product is formed, the most stable isomer has the nitroxyl (N1–O1) moiety pointing inside the cavity of the β-CD. Thus, this “internal” conformation might protect the N1–O1 moiety of the resulting spin adduct from access by reducing agents, thereby improving the lifetime of the radical adduct. The computed energetic barrier for HOO· addition to the 5R-β-CD-AMPO is 8.7?kcal/mol, which is marginally smaller than spin trapping by the non-conjugated AMPO (that is, without the β-CD). To optimize the reactivity of the β-CD-AMPO conjugate, the effect of a spacer unit between the AMPO segment and the β-CD moiety with varying methylene units, (CH2) n (n?=?1, 2, 3), on the energetics of HOO· addition was evaluated. The structure with only one methylene spacer (n?=?1) appears to be optimal as determined by the smaller activation barrier (6.2?kcal/mol) for HOO· addition to the nitrone moiety. Compared with very time-consuming quantum mechanical methods, the ONIOM method appears to offer significant advantages for evaluation of the best β-CD-AMPO conjugate for trapping of such reactive oxygen species and providing for the rational design of novel nitrones as spin traps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号