首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radio-frequency magnetron sputtering technique is used to deposit Ba0.65Sr0.35TiO3 (BST) thin films on fused quartz substrates. In order to prepare the high-quality BST thin films, the crystallization and microstructure of the films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). More intense characteristic diffraction peaks and better crystallization can be observed in BST thin films deposited at 600 °C and subsequently annealed at 700 °C. The refractive index of the films is determined from the measured transmission spectra. The dependences of the refractive index on the deposition parameters of BST thin films are different. The refractive index of the films increases with the substrate temperature. At lower sputtering pressure, the refractive index increases from 1.797 to 2.197 with pressure increase. However, when the pressure increases up to 3.9 Pa, the refractive index reduces to 1.86. The oxygen to argon ratio also plays an important effect on the refractive index of the films. It has been found that the refractive index increases with increase in the ratio of oxygen to argon. The refractive index of BST thin films is strongly dependent on the annealing temperature, which also increases as the annealing temperature ascends. In a word, the refractive index of BST thin films is finally affected by the films’ microstructure and texture.  相似文献   

2.
ZnO thin films were grown on Si(1 0 0) substrates using pulsed laser deposition in O2 gas ambient (10 Pa) and at different substrate temperatures (25, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using XRD, AFM and SEM. At substrate temperature of T=150 °C, a good quality ZnO film was fabricated that exhibits an average grain size of 15.1 nm with an average RMS roughness of 3.4 nm. The refractive index and the thickness of the thin films determined by the ellipsometry data are also presented and discussed.  相似文献   

3.
The effects of oxygen pressure on the structural and optical properties of high quality transparent conductive ZnO thin films were studied in detail. ZnO thin films were prepared by pulsed filtered cathodic vacuum arc deposition system under various oxygen pressures on glass substrate at room temperature. With increasing oxygen pressure, the structure and optical properties of films change. The structural and optical properties of the ZnO thin films were investigated using X-ray diffraction, transmittance spectrometry, refractive index, oscillator parameters, energy band gap and Urbach tail. The films show c-axis oriented (0 0 2) hexagonal wurtize crystal structure. It has been found that the grain size of ZnO thin films increases from 16.9 to 22.6 nm with the increase of oxygen pressure from 3.8×10−4 to 6.9×10−4 Torr and the crystallinity is enhanced. Average transmittance is about 90% in the visible region of the ZnO thin films. From optical transmittance spectra of ZnO films, the absorption edge shifts towards the taller wavelength with an increase in oxygen pressure. The energy band gap decreases from 3.31 to 3.20 eV with an increase in oxygen pressure. The packing density investigation shows in ZnO films high packing densities (above 0.78) can be obtained.  相似文献   

4.
In this paper, the experimental results regarding some structural, electrical and optical properties of ZnO thin films prepared by thermal oxidation of metallic Zn thin films are presented.Zn thin films (d=200–400 nm) were deposited by thermal evaporation under vacuum, onto unheated glass substrates, using the quasi-closed volume technique. In order to obtain ZnO films, zinc-coated glass substrates were isochronally heated in air in the 300–660 K temperature range, for thermal oxidation.X-ray diffraction (XRD) studies revealed that the ZnO films obtained present a randomly oriented hexagonal nanocrystalline structure. Depending on the heating temperature of the Zn films, the optical transmittance of the ZnO films in the visible wavelength range varied from 85% to 95%. The optical band gap of the ZnO films was found to be about 3.2 eV. By in situ studying of the temperature dependence of the electrical conductivity during the oxidation process, the value of about 2×10−2 Ω−1 m−1 was found for the conductivity of completely oxidized ZnO films.  相似文献   

5.
The pulsed laser deposition (PLD) technique is used to deposit undoped ZnO thin films on glass substrates at 150 °C with different oxygen pressures of 40, 80, 100 and 150 mTorr. X-ray diffraction (XRD) and atomic force microscopy (AFM) studies indicated that the obtained ZnO thin films were hexagonal wurtzite-type structures with strong (0 0 2) c-axis orientation. The relationship between photoluminescence and the conductivity of the ZnO thin films grown by pulsed laser deposition at various oxygen pressures was also discussed. The intensity of the deep-level-emission (DLE) and conductivity generally increased as the oxygen pressure decreased. The intensity of DLE peak was generally proportional to the conductivity. The band gap energy values, determined from transmittance spectra, were around 3.30-3.34 eV, and decreased when the oxygen pressure increased.  相似文献   

6.
The high exciton binding energy and band gap energy of ZnO thin films open the prospect of fabricating semiconductor lasers in the ultraviolet spectral range. A prerequisite for laser diode fabrication is highly p-doped ZnO which was not reproducibly obtained up to now. Without intentional doping ZnO exhibits n-type conduction. ZnO thin films have been obtained by radio-frequency assisted pulsed laser deposition. A metallic Zn target was used for ablation in an oxygen and nitrogen RF discharge. The electrical and morphological properties of the films grown on Si were studied by Atomic Force Microscopy (AFM), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), optical absorption and Hall Effect measurements for different ratios between the nitrogen and oxygen content. The AFM images of the as-grown ZnO films reveal high quality surfaces with low values for the surface roughness and a sharp distribution of grains sizes as an effect of the RF discharge. The XRD patterns for all samples exhibit only (002) and (004) peaks indicating that the c-axis is always oriented normal to the substrate surface. The films present p-type conductivity with different carrier concentration and mobility depending on the nitrogen/oxygen ratio.  相似文献   

7.
光谱椭偏仪被用来研究用脉冲激光沉积方法在Si(100)基片上,温度分别为400,500,600,700 ℃制备的ZnO薄膜的特性。利用三层Cauchy散射模型拟合椭偏参数,计算了每个温度下制备的ZnO薄膜在400~800 nm波长范围内的折射率(n)和消光系数(k)。发现基片温度对光学常数有很大的影响。通过分析XRD表征的晶体结构和 AFM表征的薄膜表面形貌,发现折射率的变化归因于薄膜堆积密度的变化。为了获得具有较好的光学和薄膜质量的ZnO薄膜,相比与其他沉积温度600 ℃或许是最佳的沉积温度。  相似文献   

8.
Low-resistivity n-type ZnO thin films were grown by atomic layer deposition (ALD) using diethylzinc (DEZ) and H2O as Zn and O precursors. ZnO thin films were grown on c-plane sapphire (c- Al2O3) substrates at 300 C. For undoped ZnO thin films, it was found that the intensity of ZnO () reflection peak increased and the electron concentration increased from 6.8×1018 to 1.1×1020 cm−3 with the increase of DEZ flow rate, which indicates the increase of O vacancies () and/or Zn interstitials (Zni). Ga-doping was performed under Zn-rich growth conditions using triethylgallium (TEG) as Ga precursor. The resistivity of 8.0×10−4 Ω cm was achieved at the TEG flow rate of 0.24 μmol/min.  相似文献   

9.
The investigation of structure, optical and electrical properties of tin and zinc oxide films on glass substrates by using magnetron sputtering are carried out. X-ray data show the formation of textured tin oxides film during deposition and its transformation to SnO2 polycrystalline film at low temperature (200 C) if the concentration of oxygen in the chamber is high (O2 — 100%, Ar — 0%). Optimal conditions of SnO2 polycrystalline film deposition (pressure of Ar–O2 mixture in chamber — 2.7 Pa, concentration of O2 — 10%) are determined. Low resistivity of as-deposited ZnO film and increasing ZnO crystallite sizes and phase volume at temperatures higher than the melting point of Zn (419.5 C) are explained by formation of conductive Zn and ZnO particle chains and their destruction, respectively.  相似文献   

10.
N-In codoped ZnO thin films were prepared by ion beam enhanced deposition method (IBED) and were annealed in nitrogen and oxygen ambient after deposition. The influence of post-annealing on structure, electrical and optical properties of thin films were investigated. As-deposited and all post-annealed samples showed preferential orientation along (0 0 2) plane. Electrical property studies indicated that the as-deposited ZnO film showed p-type with a sheet resistance of 67.5 kΩ. For ZnO films annealed in nitrogen with the annealing temperature increasing from 400 to 800 °C, the conduction type of the ZnO film changed from p-type to n-type. However, for samples annealed in oxygen the resistance increased sharply even at a low annealing temperature of 400 °C and the conduction type did not change. Room temperature PL spectra of samples annealed in N2 and in O2 showed UV peak located at 381 and 356 nm, respectively.  相似文献   

11.
ZnO thin films with the thickness of about 15 nm on (0 0 0 1) sapphire substrates were prepared by pulsed laser deposition. X-ray photoelectron spectroscopy indicated that both as-grown and post-annealed ZnO thin films were oxygen-rich. H2 sensing measurements of the films indicated that the conductivity type of both the unannealed and annealed ZnO films converted from p-type to n-type in process of increasing the operating temperature. However, the two films showed different conversion temperatures. The origin of the p-type conductivity in the unannealed and annealed ZnO films should be attributed to oxygen related defects and zinc vacancies related defects, respectively. The conversion of the conductivity type was due to the annealing out of the correlated defects. Moreover, p-type ZnO films can work at lower temperature than n-type ZnO films without obvious sensitivity loss.  相似文献   

12.
Thin films of ZnO have been grown by plasma assisted metal–organic chemical vapour deposition (PA-MOCVD) using a 13.56 MHz O2 plasma and the (HTTA=2-thenoyltrifluoroacetone, TMED=N,N,N′,N′-tetramethylethylendiamine) precursor. The effects of growth parameters such as the plasma activation, the substrate, the surface temperature, and the ratio of fluxes of precursors on the structure, morphology, and optical and electrical properties of ZnO thin films have been studied. Under a very low plasma power of 20 W, c-axis oriented hexagonal ZnO thin films are grown on hexagonal sapphire (0001), cubic Si(001) and amorphous quartz substrates. The substrate temperature mainly controls grain size.  相似文献   

13.
ZnO thin films are prepared on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) at room temperature. Optical parameters such as optical transmittance, reflectance, band tail, dielectric coefficient, refractive index, energy band gap have been studied, discussed and correlated to the changes with film thickness. Kramers-Kronig and dispersion relations were employed to determine the complex refractive index and dielectric constants using reflection data in the ultraviolet-visible-near infrared regions. Films with optical transmittance above 90% in the visible range were prepared at pressure of 6.5 × 10−4 Torr. XRD analysis revealed that all films had a strong ZnO (0 0 2) peak, indicating c-axis orientation. The crystal grain size increased from 14.97 nm to 22.53 nm as the film thickness increased from 139 nm to 427 nm, however no significant change was observed in interplanar distance and crystal lattice constant. Optical energy gap decreased from 3.21 eV to 3.19 eV with increasing the thickness. The transmission in UV region decreased with the increase of film thickness. The refractive index, Urbach tail and real part of complex dielectric constant decreased as the film thickness increased. Oscillator energy of as-deposited films increased from 3.49 eV to 4.78 eV as the thickness increased.  相似文献   

14.
In the present study, the structural, optical and antibacterial properties of ZnO thin films are reported. ZnO thin films are deposited on borosilicate glass substrates by radio frequency plasma enhanced chemical vapor deposition (PECVD) using oxygen as process gas. The crystallinity of the deposited films is improved upon annealing at 450 °C in air for 1.5 h and the polycrystalline nature of the films is further confirmed by selected area electron diffraction. The particle size of the annealed film (thickness 476 nm) is found to be ∼34 nm from the transmission electron microscopic observation. Energy dispersive X-ray spectrum indicates the stoichiometric deposition of ZnO films. The films are highly transparent (transmittance >85%) in the visible region of electromagnetic spectrum. The films exhibit excellent antibacterial effect towards the growth of Escherichia coli and Pseudomonas aeruginosa.  相似文献   

15.
The synthesis by pulsed laser deposition technique of zinc oxide thin films suitable for gas sensing applications is herein reported. The ZnO targets were irradiated by an UV KrF* (λ = 248 nm, τFWHM ∼7 ns) excimer laser source, operated at 2.8 J/cm2 incident fluence value, whilst the substrates consisted of SiO2(0 0 1) wafers heated at 150 °C during the thin films growth process. The experiments were performed in an oxygen dynamic pressure of 10 Pa. Structural and optical properties of the thin films were investigated. The obtained results have demonstrated that the films are c-axis oriented. Their average transmission in the visible-infrared spectral region was found to be about 85%. The equivalent refractive indexes and extinction coefficients were very close to those of the tabulated reference values. Doping with 0.5% Au and coating with 100 pulses of Au clusters caused but a very slight decrease (with a few percent) of both transmission and refractive index values. The coatings with the most appropriate optical properties as waveguides have been selected and their behavior was tested for butane sensing.  相似文献   

16.
Doped zinc oxide thin films are grown on glass substrate at room temperature under oxygen atmosphere, using pulsed laser deposition (PLD). O2 pressure below 1 Pa leads to conductive films. A careful characterization of the film stoichiometry and microstructure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) concludes on a decrease in crystallinity with Al and Ga additions (≤3%). The progressive loss of the (0 0 2) orientation is associated with a variation of the c parameter value as a function of the film thickness and substrate nature. ZnO:Al and ZnO:Ga thin films show a high optical transmittance (>80%) with an increase in band gap from 3.27 eV (pure ZnO) to 3.88 eV and 3.61 eV for Al and Ga doping, respectively. Optical carrier concentration, optical mobility and optical resistivity are deduced from simulation of the optical data.  相似文献   

17.
In this work, we report on the electrodeposition of ZnO thin films on n-Si (1 0 0) and glass substrates. The influence of the deposition time on the morphology of ZnO thin films was investigated. The ZnO thin films were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDS) and scanning electron microscopy (SEM). The results show a variation of ZnO texture from main (0 0 2) at 10 min to totally (1 0 1) at 15 min deposition time. The photoluminescence (PL) studies show that both UV (∼382 nm) and blue (∼432 nm) luminescences are the main emissions for the electrodeposited ZnO films. In addition, the film grown at 15 min indicates an evident decrease of the yellow-green (∼520 nm) emission band comparing with that of 10 min. Finally, transmittance spectra show a high transmission value up to 85% in the visible wavelength range. Such results would be very interesting for solar cells applications.  相似文献   

18.
We investigated the material and electrical properties of Li doped ZnO thin film (ZLO) with variation of the annealing temperature. In the 500 C sample, ZLO film showed well defined (002) c-axis orientation and a full width half-maximum property of 0.25. The electrical properties of ZLO thin films showed the excellent specific resistance of 1.5×1011 Ω cm. Finally, the frequency characteristics of the ZLO thin film FBAR, according to the annealing temperature, showed improvement of the return loss from 24.48 to 30.02 dB at a resonant frequency of 1.17 GHz.  相似文献   

19.
In this study, ZnO thin films were fabricated using the rf magnetron sputtering method and their piezoelectrical and optical characteristics were investigated for various substrate temperatures. The ZnO thin film has the largest crystallization orientation for the (0 0 2) peak and the smallest FWHM value of 0.56° at a substrate temperature of 200 °C. The surface morphology shows a relatively dense surface structure at 200 °C compared to the other substrate temperatures. The surface roughness shows the smallest of 1.6 nm at a substrate temperature of 200 °C. The piezoelectric constant of the ZnO thin film measured using the pneumatic loading method (PLM) has a maximum value of 11.9 pC/N at a substrate temperature of 200 °C. The transmittance of the ZnO thin film measured using spectrophotometry with various substrate temperatures ranged from 75 to 93% in the visible light region. By fitting the refractive index from the transmittance to the Sellmeir dispersion relation, we can predict the refractive index of the ZnO thin film according to the wavelength. In the visible light range, the refraction index of the ZnO thin film deposited at a substrate temperature of 200 °C is the range of 1.88-2.08.  相似文献   

20.
Fabrication and properties of ZnO:Cu and ZnO:Ag thin films   总被引:1,自引:0,他引:1  
Thin films of ZnS and ZnO:Cu were grown by an original metal–organic chemical vapour deposition (MOCVD) method under atmospheric pressure onto glass substrates. Pulse photo-assisted rapid thermal annealing of ZnO:Cu films in ambient air and at the temperature of 700–800 C was used instead of the common long-duration annealing in a vacuum furnace. ZnO:Ag thin films were prepared by oxidation and Ag doping of ZnS films. At first a closed space sublimation technique was used for Ag doping of ZnO films. The oxidation and Ag doping were carried out by a new non-vacuum method at a temperature >500 C. Crystal quality and optical properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL). It was found that the doped films have a higher degree of crystallinity than undoped films. The spectra of as-deposited ZnO:Cu films contained the bands typical for copper, i.e. the green band and the yellow band. After pulse annealing at high temperature the 410 and 435 nm photoluminescent peaks were observed. This allows changing of the emission colour from blue to white. Flat-top ZnO:Ag films were obtained with the surface roughness of 7 nm. These samples show a strong ultraviolet (UV) emission at room temperature. The 385 nm photoluminescent peak obtained is assigned to the exciton–exciton emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号