首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Platinum nanoparticles were used in combination with multi-walled carbon nanotubes (MWCNTs) for fabricating sensitivity-enhanced electrochemical DNA biosensor. Multi-walled carbon nanotubes and platinum nanoparticles were dispersed in Nafion, which were used to fabricate the modification of the glassy carbon electrode (GCE) surface. Oligonucleotides with amino groups at the 5′ end were covalently linked onto carboxylic groups of MWCNTs on the electrode. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement of the intercalated daunomycin. Due to the ability of carbon nanotubes to promote electron-transfer reactions, the high catalytic activities of platinum nanoparticles for chemical reactions, the sensitivity of presented electrochemical DNA biosensors was remarkably improved. The detection limit of the method for target DNA was 1.0 × 10−11 mol l−1.  相似文献   

2.
In this work, silver (Ag) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by chemical reduction while Ag-decorated MWNTs (Ag-MWNTs)/polyaniline (PANI) composites were prepared by oxidation polymerization. The effect of the Ag incorporated into the interface of the composites on the electrochemical performance of the MWNTs/PANI was investigated. It was found that highly dispersed Ag nanoparticles were deposited onto the MWNTs, and the Ag-MWNTs were successfully coated by PANI. According to cyclic voltammograms, the Ag-MWNTs/PANI exhibited significantly increased electrochemical performances compared to MWNTs/PANI and the highest specific capacitance obtained of MWNTs/PANI and 0.15 M Ag-MWNTs/PANI was 162 F/g and 205 F/g, respectively. This indicated that Ag nanoparticles that were deposited onto the MWNTs caused an enhanced electrochemical performance of the MWNTs/PANI due to their high electric conductivity, which resulted in an increase of the charge transfer between the MWNTs and PANI by a bridge effect.  相似文献   

3.
Multi-walled carbon nanotubes (MWNTs) were modified by oxyfluorination treatment at several different temperatures of 20, 100, 200, and 300 °C. The changes of surface properties of oxyfluorinated MWNTs were investigated using X-ray photoelectron spectroscopy (XPS) method. As a result, it was found that surface fluorine contents were varied with changing an oxyfluorination temperature and showed a maximum value at 100 °C. By changing the treatment temperature in the process of oxyfluorination for carbon supports, the surface characteristics of MWNTs had been modified, resulting that the size and loading content of deposited Pt on the modified carbon supports could be changed. Consequently, Pt deposited MWNTs that were treated at 100 °C (Pt/100-MWNTs) showed the best electroactivity among samples. The enhanced electroactivity was dependent on the higher surface area of electrochemical reaction for metal catalyst, which was related to the particle size and the morphology of the deposited particle catalysts.  相似文献   

4.
Summary Catalyst prepared by impregnation of trititanate nanotubes with pre-prepared platinum nanoparticles was synthesized and tested in hydrogenation-dehydrogenation reactions of cyclohexene. The results show that this type of catalyst possesses interesting properties as compared to conventional catalysts.  相似文献   

5.
In this study, the surface modification of multi-walled carbon nanotubes (MWCNTs) with acid and oxyfluorination has been examined. Acid treatment of multi-walled CNTs produces many functionalized groups on the surface of MWCNTs, such as C-N stretching and the asymmetric carboxylate group (-COO-). It can be concluded that nitrogen doping of the graphite sheets may take place and a C-N bond identical to the sp3-bonded carbon nitride may form during the acid treatment process. In addition, oxyfluorinated MWCNTs exhibit higher BET specific surface area and mesopore volume than those of the as-received and acid treated MWCNTs. Therefore, acid and oxyfluorination treatments are more effective methods for enhancing the chemical and textural properties of MWCNTs.  相似文献   

6.
一直以来,以碳材料为载体负载的金属催化剂被广泛应用于甘油液相氧化反应.研究表明,催化剂活性与碳的孔径分布有关,随着碳载体微孔比例的增加,催化剂活性下降.此外,载体表面基团对金属活性有着重要影响.例如,载体表面含氧基团的吸电子作用可降低载体表面电子的流动性(电子密度和导电性),从而阻碍甘油氧化反应过程中OH–的吸附和再生,导致反应活性降低.因此,开发微孔比例小、富含负电性基团的碳载体成为甘油氧化过程中急需解决的问题之一.本文通过热解碳纳米管(MWCNTs)和三聚氰胺的混合物,在碳纳米管表面直接生长得到氮杂石墨烯(NG-MWCNTs),并采用SEM,N2吸附,TEM和XRD对所得复合材料进行了表征.实验发现,相比于单纯的MWCNTs和直接热解三聚氰胺所得的产物CNx,NG-MWCNTs具有更高的比表面积(173 m2/g)和更大的平均孔径.此外,NG-MWCNTs非常适合作为Pt催化剂的载体,Pt平均粒径可小至1.4±0.4 nm.所制备的Pt/NG-MWCNTs催化剂在甘油选择性氧化反应中具有很高的催化活性和甘油酸选择性(甘油转化率和甘油酸选择性分别可达64.4%和81.0%),且具有可重复使用性能.Pt/NG-MWCNTs催化剂优异的催化活性不仅与载体表面高分散的Pt有关,而且与N原子对Pt的给电子作用有关.  相似文献   

7.
胡巧玲 《高分子科学》2010,28(5):801-806
<正>Multi-walled carbon nanotubes(MWNTs) and chitosan(CS) composite rods with layer-by-layer structure were prepared via in situ precipitation method.On the one hand,some MWNTs fragments with open tips played the role of nuclear agent to improve the crystallinity of CS.On the other hand,MWNTs embedded in CS matrix to absorb energy when the composite rods were destroying.Nanotubes pulled out from CS matrix,and lots of holes remained,so MWNTs could endure external stress effectively.The bending strength and bending modulus of CS/MWNTs rods(100/0.5,W/W) arrived at 130.7 MPa and 4.4 GPa respectively,increased by 34.3%and 7.3%compared with those of pure CS rods.Consequently, CS/MWNTs composite rods with excellent mechanical properties could be a novel device used for bone fracture internal fixation.  相似文献   

8.
This study describes the successful sequential modification of multi-walled carbon nanotube (MWCNT) by Fe3O4 magnetic nanoparticles and 2-mercaptobenzothiazole (MBT) followed by its application as a novel sorbent for simultaneous magnetic solid phase microextraction of lead and cadmium. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to confirm the chemical surface modification of the MWCNT. The ions retained on the 2-MBT/magnetic nanoparticles modified MWCNTs were eluted with 1.0 mL of nitric acid (0.8 mol L?1) in methanol solution and determined by the flame atomic absorption spectrometry. All parameters affecting the extraction condition were thoroughly investigated and optimised. Under the optimised condition preconcentration factor of 150.0, enhancement factors of 149.0 and 149.2 and limits of detection of 0.21 and 0.01 µg L?1 were achieved for lead and cadmium, respectively. Using the prepared magnetic nanocomposite, the possible interference of other common ions associated with lead and cadmium determination was effectively avoided and the method was successfully applied to the simultaneous determination of the target ions in various environmental water samples.  相似文献   

9.
L-酪氨酸功能化多壁碳纳米管的制备及表征   总被引:1,自引:0,他引:1  
采用L-酪氨酸作为修饰剂,制备了一种新型功能化的多壁碳纳米管,并对其进行了表征。红外光谱和电化学实验均证实碳纳米管和酪氨酸是通过酰胺键共价键合的。其中,循环伏安实验中0.22V处羧基峰的消失与红外光谱中1717cm^-1处N-酰化氨基酸的-C=O峰相对应,2931和2860cm^-1处的-CH2-的伸缩振动峰的出现证明了产物的形成。  相似文献   

10.
The nanocomposites of multi-walled carbon nanotubes (MWNTs) decorated with nickel nanoparticles were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). Due to the strong interaction between Ni2+ and –COOH, PAA-g-MWNTs became an excellent supporting material for Ni nanoparticles. The morphology and distribution of Ni nanoparticles on the surface of MWNTs were greatly influenced by the reduction temperatures, the experimental results also showed that the distribution of Ni nanoparticles was greatly improved while the MWNTs were modified by poly(acrylic acid) (PAA). The hydrogenation activity and selectivity of MWNTs decorated with Ni nanoparticles (Ni-MWNTs) for α, β-unsaturated aldehyde (citral) were also studied, and the experimental results showed that the citronellal, an important raw material for flavoring and perfumery industries, is the favorable product with a percentage as high as 86.9%, which is 7 times higher than that of catalyst by Ni-supported active carbon (Ni-AC).  相似文献   

11.
Biodegradable poly(butylene succinate) (PBSU)/functional multi-walled carbon nanotubes (f-MWNTs) nanocomposite were prepared by melt compounding. Nonisothermal crystallization and subsequent melting behavior, isothermal crystallization kinetics, spherulitic morphology, and crystal structure of neat PBSU and its nanocomposite were studied by differential scanning calorimetry, optical microscopy and wide angle X-ray diffraction in detail. The presence of f-MWNTs has a significant heterogeneous nucleation effect on the crystallization and morphology of PBSU, resulting in that the crystallization is enhanced during both nonisothermal and isothermal crystallization in the nanocomposite. Moreover, the crystal structure of PBSU is not modified by f-MWNTs in the nanocomposite. The thermogravimetric analysis illustrates an improvement in thermal stability of PBSU by around 10 °C in the presence of f-MWNTs compared with that of neat PBSU.  相似文献   

12.
Multi-walled carbon nanotubes/polypropylene composites were compounded using a twin-screw extruder. Here, nanotubes with different lengths, i.e. 1-2 μm and 5-15 μm, respectively, were applied at a constant volume content of 1%. Notched Charpy impact tests showed that toughening effects of nanotubes depended highly on testing temperatures. The impact resistance was notably enhanced at a temperature above the glass transition temperature of matrix. Longer nanotubes performed more effective in toughening compared to the shorter ones. The increment of impact resistance of nanotube-filled polypropylene was considered due to enhanced load-carrying capability and much-increased deformation of matrix. SEM fractography further revealed the toughening mechanisms in a micro-scale. The impact energy was improved via nanotube breakage and pullout, which likely led to a series of energy consuming actions. In addition, the smaller spherulite size induced by nanotubes would be favourable to the impact resistance partially.  相似文献   

13.
采用等体积浸渍法制备多壁碳纳米管(MWCNTs)负载Ce-Mn的催化剂,考察了Ce掺杂对Mn/MWCNTs催化剂上NH3选择性催化还原(SCR)NOx反应活性的影响.并运用透射电镜扫描、N2吸附-脱附、程序升温还原、X射线光电子能谱、X射线衍射等手段,重点考察了Ce掺杂对Mn/MWCNTs催化剂结构性质的影响.结果表明,Ce掺杂能显著提高催化剂的SCR活性,其活性增量随着Ce含量的增加先增大后减小;当Ce/Mn为0.6时,催化剂活性最佳.表征结果显示,Mn/MWCNTs中添加Ce后,金属氧化物在MWCNTs上的分散程度提高;催化剂的比表面积和孔体积增大,平均孔径减小;氧化能力提高;表面氧含量增加,Mn化合价升高;结晶度降低,Mn主要以无定形或微晶形式存在,Ce主要以CeO2物相存在.  相似文献   

14.
Platinum nanoparticles supported on multi-walled carbon nanotubes (Pt/MWCNTs) were first prepared by simple pyrolysis of H2PtCl6 solution. The structure of Pt/MWCNTs was characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), and the results showed that the diameter of the obtained platinum nanoparticles immobilized on MWCNTs was below 50 nm, although the obtained platinum nanoparticles were not well uniformly dispersed on the surface of MWCNTs. The electrocatalytic performance of Pt/MWCNTs electrode for methanol oxidation reaction (MOR) was also investigated by linear sweep voltammetry (LSV), indicating that it was possible to employ the obtained platinum nanoparticles as anode material in fuel cell. Developing a novel and simple method to prepare platinum nanoparticles onto MWCNTs is the main contribution of this letter. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 8, pp. 1050–1053. The text was submitted the authors in English.  相似文献   

15.
We explore here the ability of ruthenium hydroxo species to undergo spontaneous deposition on Pt nanoparticles and to form colloidal solutions of oxoruthenium-protected (-stabilized) nanoparticles of Pt. These particles can be spontaneously attracted to carbon substrates, and they form ultrathin self-assembled films. Fabrication of the multilayer network films on electrodes has been achieved by linking the positively charged oxoruthenium-covered Pt clusters with heteropolyanions of tungsten. By repeated alternate treatments in a solution of phosphododecatungstate (PW12O403–) and in a colloidal suspension of oxoruthenium-protected (-stabilized) Pt nanoparticles, the film thickness can be increased systematically (layer by layer) to form stable three-dimensional assemblies on carbon electrodes. It is apparent from cyclic voltammetric and chronoamperometric measurements (that were performed at 20 and 60 °C) that the resulting hybrid films show attractive properties towards the oxidation of methanol at fairly low potentials (0.25–0.4 V versus the saturated calomel electrode). With approximately the same loading of oxoruthenium-covered Pt nanoparticles and under analogous conditions, linking or derivatizing the nanoparticles with phosphotungstate leads to the systems higher electrocatalytic activity. It is possible that, in addition to ruthenium hydroxo species, PW12O403– exhibits an activating effect on dispersed Pt particles. An alternative explanation may involve the possibility of different morphologies of the catalytic films in the presence and absence of phosphotungstate anions.Dedicated to Zbigniew Galus on the occation of his 70th birthday  相似文献   

16.
In this work, electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) are studied in supercapacitors. Nitrogen and oxygen functional groups containing MWNTs are prepared by urea and acidic treatments, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and zeta-potential measurements. The textural properties are characterized by N2 adsorption/desorption isotherm at 77 K using the BET eqaution, BJH method, and HK method. The electrochemical properties of the MWNTs are accumulated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M H2SO4 at room temperature. As a result, the functionalized MWNTs lead to an increase in capacitance as compared with pristine MWNTs. It suggests that the pyridinic and pyridinic-N-oxides nitrogen species have effects on the specific capacitance due to the positive charge, and thus an improved electron transfer at high current loads results, the most important functional groups affecting capacitive behaviors.  相似文献   

17.
A chemically modified electrode is constructed based on the multi-walled carbon nanotubes (MWNTs)/4-aminobenzeresulfonic acid (4-ABSA) film-coated glassy carbon electrode. The electrocatalytic oxidation of tyrosine (Tyr) is investigated on the surface of the MWNTs/4-ABSA-modified electrode using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The prepared modified electrode shows voltammetric responses with high sensitivity and selectivity for Tyr in optimal conditions, which makes it very suitable for sub-micromolar detection of Tyr. A sensitive oxidation peak at +0.64 V is employed to determine Tyr. Good linear relationship between the oxidation peak current and the Tyr concentration in the range of 1 × 10−7 to 5 × 10−5 mol/L is obtained in phosphate buffer solution with pH 7.0. By use of modified electrode, the voltammetric detection limit for Tyr in DPV measurements is 8 × 10−8 mol/L (S/N = 3). Good sensitivity, selectivity and stability of the low-cost modified electrode make it very suitable for the determination of trace amounts of Tyr in pharmaceutical and clinical preparations.  相似文献   

18.
Lithium insertion (deinsertion) into (from) chemically etched multi-walled carbon nanotubes (c-MWNTs) has been investigated using various electrochemical techniques such as chronopotentiometry, chronoamperometry, and electrochemical impedance spectroscopy. The results indicate that not only the reversible capacity but also the rate capability was improved by a chemical etching (shortening) of the nanotubes. The observed enhancement in capability at high-rate lithium insertion/deinsertion is attributed to the increased electrochemically active area and reduced lithium diffusion length along the nanotubes, resulting from the structural defects and open ends of the c-MWNTs.  相似文献   

19.
在乙二醇和水混合溶剂中,采用硼氢化钠还原的方法制备了多壁碳纳米管(MWCNT)负载的Pd和Pd-Ag纳米颗粒催化剂;在碱性介质中,用循环伏安法测试了这些催化剂对乙醇、正丙醇和异丙醇的电氧化性能。结果表明,Pd和Pd-Ag纳米颗粒均匀地分散在MWCNT表面;Pd/MWCNT、Pd4Ag1/MWCNT、Pd2Ag1/MWCNT和Pd1Ag1/MWCNT催化剂上金属颗粒的平均粒径分别为7、4、7和11 nm。相比乙醇和异丙醇,所制备的催化剂对正丙醇的氧化表现出较大的电流密度。与Pd/MWCNT催化剂相比,双金属PdnAg1/MWCNT(n=4、2、1)催化剂,尤其是Pd4Ag1/MWCNT上的电流密度更大,表明Ag的加入提高了Pd催化剂对醇氧化的电化学活性,其原因是因为醇氧化过程所产生的中间体物种在双金属Pd-Ag/MWCNT催化剂上的吸附力有所减弱。  相似文献   

20.
Three-dimensionally (3D) ordered mesoporous carbon sphere arrays (OMCS) are explored to support high loading (60 wt%) Pt nanoparticles as electrocatalysts for the methanol oxidation reaction (MOR). The OMCS has a unique hierarchical nanostructure with ordered large mesopores and macropores that can facilitate high dispersion of the Pt nanoparticles and fast mass transport during the reactions. The prepared Pt/OMCS exhibits uniformly dispersed Pt nanoparticles with an average size of 2.0 nm on the mesoporous walls of the carbon spheres. The Pt/OMCS catalyst shows significantly enhanced specific electrochemically active surface area (ECSA) (73.5 m2 g-1) and electrocatalytic activity (0.69 mA cm-2) for the MOR compared with the commercial 60 wt% Pt/C catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号