首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman spectroscopy is a powerful technique that is used to characterize or observe alterations in the structure or properties of carbon nanotubes and its composites. This method can provide information about electronic changes or quantify them. We used Raman spectroscopy to study the chemical and electronic changes in a composite formed by titanium dioxide nanoparticles and single-walled carbon nanotubes. This composite was characterized by scanning electron microscopy to investigate the morphology and by thermogravimetric analyses to assess the thermal stability of the isolated carbon nanotubes as compared with the nanotubes by titanium dioxide nanoparticles. The Raman results showed that the modification of the nanotubes with the TiO2 nanoparticles generates a new material with different structure of the nanotubes, resulting in a decrease in defects. The charge transfer from the TiO2 nanoparticles to the nanotubes alters the electronic properties of both moieties in the hybrid material. The interaction between the nanotubes and nanoparticles decreases the CC bound order of the nanotubes and decreases their thermal stability.  相似文献   

2.
制备均一形貌的长二氧化钛纳米管   总被引:24,自引:0,他引:24  
张青红  高濂  郑珊  孙静 《化学学报》2002,60(8):1439-1444
在温和的水热条件下,用碱溶液处理不同粒径的锐钛矿相和金红石相二氧化钛 纳米粉体,得到了不同形貌的二氧化钛纳米管,并用TEM,XRD,FT-Raman和BET等 对其进行了表征。金红石相的超细纳米晶有利于形成均一形貌的纳米管,用粒径仅 为7.2 nm的金红石相纳米粉体为前驱体得到了长度为500 nm的长二氧化钛纳米管。 用纳米晶反应活性对晶粒尺寸的依赖性及晶相稳定性解释了长纳米管的形成机理。  相似文献   

3.
A novel in situ approach to mass fabrication of carbon nanotubes was reported. Composites of polypropylene (PP)/organomontmorillonite (OMMT)/nickel formate (NF) were prepared by mixing these components in a Brabender mixer at an elevated temperature. Chestnut-like carbon nanotube (CNT) spheres were in situ fabricated in high yields by heating the PP/OMMT/NF composites at 900 degrees C without adding any additional pre-synthesized nickel nanocatalysts. The products were studied by X-ray diffractometer (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, and N2 adsorption-desorption measurements. The results showed that nickel nanoparticles were in situ produced, which catalyzed the formation of multiwalled carbon nanotubes (MWNTs) in an autoclave-like microreactor formed by OMMT. These in situ formed nickel nanoparticles were found to be more catalytically active than pre-synthesized nickel nanocatalysts, resulting in higher yields of CNTs. The obtained CNT spheres have a high surface area, which makes them a good catalyst support. Loading of metal nanoparticles was preliminarily tried, and Pt nanoparticles of ca. 2.65 nm in size were successfully deposited on CNTs. The applications of these nanocatalysts in chemical reactions are currently being studied in our laboratory.  相似文献   

4.
The excellent shock-absorbing performance of WS2 and MoS2 nanoparticles with inorganic fullerene-like structures (IFs) under very high shock wave pressures of 25 GPa is described. The combined techniques of X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, thermal analysis, and transmission electron microscopy have been used to evaluate the diverse, intriguing features of shock recovered IFs, of interest for their tribological applications, thereby allowing improved understanding of their antishock behavior and structure-property relationships. Two possible failure mechanisms are proposed and discussed. The supershock-absorbing ability of the IF-WS2 enables them to survive pressures up to 25 GPa accompanied with concurrent temperatures of up to 1000 degrees C without any significant structural degradation or phase change making them probably the strongest cage molecules now known.  相似文献   

5.
采用XRD、TGA、SEM、TEM、 Raman光谱等多种表征手段,考察了Al2O3气凝胶催化剂上甲烷裂解生长的碳纳米管的结构特征.制得的碳纳米管形态单一,为管径均匀、管壁光滑的中空纳米管,平均直径在10~20 nm.碳纳米管的比表面积较大,具有较强的抗氧化能力,其结构的长程有序度较石墨低.由碳纳米管的Raman光谱分析可知,碳纳米管存在碳层缺陷和无定形碳.当反应温度升高或甲烷浓度下降时,碳纳米管石墨化程度逐渐提高.  相似文献   

6.
The Pt–Ni alloy nanoparticles with different Pt/Ni atomic ratios supported on functionalized multiwalled carbon nanotubes surface were synthesized via an impregnation-reduction method. The nanocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques. XRD demonstrated that Pt was alloyed with Ni. TEM showed that the Pt–Ni alloy nanoparticles were uniformly dispersed on the multiwalled carbon nanotubes (MWCNTs) surface, indicating appropriate amount of Ni in Pt–Ni alloy which facilitates the dispersion of nanoparticles on the MWCNT surface. XPS revealed that the Pt 4f peak in Pt–Ni/MWCNT (4:1) catalyst shifted to a lower binding energy compared with Pt/MWCNT catalyst, and nickel oxides/hydroxides such as NiO, Ni(OH)2, and NiOOH were on the surface of Pt–Ni nanoparticles. Electrochemical data based on cyclic voltammetry and chronoamperometric curves indicated that Pt–Ni (4:1) alloy nanoparticles exhibited distinctly higher activity and better stability than those of Pt/MWCNTs toward methanol oxidation in alkaline media.  相似文献   

7.
用真空高温炉对在纳米聚团流化床中用催化裂解法大批量制备的多壁碳纳米管进行了1500~2150℃的真空高温处理,并用高分辨透射电镜、激光拉曼、X射线晶体衍射及热重分析表征热处理效果.结果证明,高温处理对碳纳米管具有显著的整形作用,激光拉曼光谱可以有效地表征高温整形效果,但是管壁的大缺陷很难得到修复.经过1800℃处理以后,碳纳米管中的金属催化剂和载体得到有效去除,产品纯度高达99%以上.  相似文献   

8.
In this Communication, we have demonstrated a facile and effective approach to identify the structure of the superlong well-aligned single-walled carbon nanotubes (SWNTs) by the combination of electrodeposition of metal (Ag) with Raman spectroscopy. The suitable density and the visibility of the Ag-deposited long oriented nanotubes make it possible to acquire Raman spectra from isolated individual nanotubes very easily. The results reveal that the well-oriented SWNT arrays on SiO2/Si wafer fabricated by EtOH chemical vapor deposition using Fe/Mo nanoparticles as catalyst exhibit a low percentage of metallic SWNTs (5%). Among other SWNTs about 62.3% are semiconducting SWNTs, and a small amount of nanotubes are quasimetallic. About 32% are a so-called quasi-insulator, which is caused inevitably by the defects during growth. Furthermore, the structural uniformity of the long SWNTs can be also evaluated by the deposition of Ag along the length and Raman spectroscopy. This method also provides an approach to deposit other metals on long SWNTs, which could have various potential applications such as for use as sensors, etc. More importantly, this facile method can be applied to long SWNT arrays fabricated from other different catalytic systems so that the relationship between the growth conditions and the structures of SWNTs are expected to be ruled out.  相似文献   

9.
We describe the growth of carbon nanotubes (CNTs) from catalytic nanoparticles formed on a nickel surface. For the growth of CNTs, a chemical vapor deposition (CVD) furnace was set up and ethanol was used as carbon source. Observation of SEM images shows that CNTs grew densely on the nickel surface and that nanoparticles play a key role in the growth of the CNTs. XRD and Raman analyses reveal that the obtained products have graphitic pattern of multi-walled carbon nanotubes (MWCNTs). Also HRTEM images confirm clearly that the product was a MWCNT and their diameter was in the range of 20–50 nm.  相似文献   

10.
Novel route to WOx nanorods and WS2 nanotubes from WS2 inorganic fullerenes   总被引:3,自引:0,他引:3  
WO(x) (2 < x < 3) and WS(2) nanostructures have been widely praised due to applications as catalysts, solid lubricants, field emitters, and optical components. Many methods have been developed to fabricate these nanomaterials; however, most attention was focused on the same dimensional transformation from WO(x) nanoparticles or nanorods to WS(2) nanoparticles or nanotubes. In a solid-vapor reaction, by simply controlling the quantity of water vapor and reaction temperature, we have realized the transformation from quasi-zero-dimensional WS(2) nanoparticles to one-dimensional W(18)O(49) nanorods, and subsequent sulfuration reactions have further converted these W(18)O(49) nanorods into WS(2) nanotubes. The reaction temperature, quantity of water vapor, and pretreatment of the WS(2) nanoparticle precursors are important process parameters for long, thin, and homogeneous W(18)O(49) nanorods growth. The morphologies, crystal structures, and circling transformation mechanisms of sulfide-oxide-sulfide are discussed, and the photoluminescence properties of the resulting nanorods are investigated using a Xe lamp under an excitation of 270 nm.  相似文献   

11.
Thermogravimetric (TG) and varied temperature Raman spectroscopic measurements of melt-blended polypropylene composites (PP) with double wall (DWNT) and multi-wall carbon nanotubes (MWNT) revealed that the incorporation of carbon nanotubes into polymer matrix increased the thermal stability comparing to the virgin polypropylene. The characterization of reference nanotubes was also done by Raman microscopy and TG measurements. Varied temperature rheological analysis provided further information about the thermal decomposition of the composites indicating the formation of high strength char in case of MWNT and limited applicability of DWNT at high temperature. The residue of the decomposition of PP-MWNT nanocomposites consists of nanotubes of spectroscopically higher purity comparing to the original one indicating the thermally induced chemical changes in the solid phase.  相似文献   

12.
This paper describes a new strategy through noncovalent functionalization of multi-walled carbon nanotubes (MWNTs) by a kind of new copolymer Polyethyleneimine-graft-Polyacrylonitrile for attaching CdSe nanoparticles onto the MWNTs to fabricate Carbon Nanotube/CdSe heterostructures. Polyethyleneimine (PEI), an amino-rich cationic polyelectrolyte, can interact with the MWNTs through electrostatic interaction. Then, CNT/PEI-g-PAN was successfully prepared by in situ atom transfer radical polymerization (ATRP), which did not introduce defects to the structure of CNTs. Thus, CdSe nanoparticles can be covalently coupled to functionalized carbon nanotubes (CNTs) in a uniform and controllable manner. Moreover, this method ensures good dispersion and high stability in any commonly used organic or inorganic solvent. In this manner, our strategy allows the attachment of various colloidal nanoparticles to CNTs, independent of their surface properties, i.e. hydrophilic or hydrophobic. TEM, XRD, EDS and FT-IR are all used to characterize the CNT/CdSe composite materials. In addition, the optical properties are investigated by UV–vis spectrum.  相似文献   

13.
A procedure, combining molecular simulation, Raman spectroscopy, and standard nitrogen adsorption, is developed for structural characterization of single-walled carbon nanotube (SWNT) samples. Grand canonical Monte Carlo simulations of nitrogen adsorption are performed on the external and internal adsorption sites of homogeneous arrays of SWNTs of diameters previously determined by Raman spectroscopy of the sample. The results show the importance of the peripheral grooves of a nanotube bundle at low relative pressure and the insensitivity of nanotube diameter toward adsorption on the external surface of the bundle at higher pressures. Simulations also reveal that samples containing thin nanotubes have less internal adsorption capacity that saturates at lower pressure than those comprising large diameter nanotubes. The fraction of open-ended nanotubes in a sample can be estimated by scaling the simulated internal adsorption inside nanotubes to obtain a near perfect fit between simulated and experimental isotherms. This procedure allows extrapolation of adsorption properties to conditions in which all nanotubes in the sample are open-ended.  相似文献   

14.
Raman spectroscopy was applied to study the adsorbed hydrogen phase in porous materials at room temperature and under cryogenic conditions. A comparison between the Raman spectra of H(2) molecules adsorbed on single walled carbon nanotubes and on a Cu-based metal-organic framework reveals that the interaction strength for the adsorption of molecular hydrogen is very similar in these materials. In both cases the small perturbation of the Raman spectrum of hydrogen indicates that adsorption takes place without any evident charge transfer between H(2) and the adsorbent. Additionally for single walled carbon nanotubes at least two types of adsorption sites could be identified by Raman spectroscopy.  相似文献   

15.
Effect of different nanoparticles on HDPE UV stability   总被引:1,自引:0,他引:1  
In the present study different series of HDPE nanocomposites were prepared by melt mixing on a Haake-Buchler Reomixer, containing 2.5 wt% of multiwall carbon nanotubes, pristine and modified montmorillonite, and SiO2 nanoparticles. Nanocomposites in the form of thin films were exposed to UV irradiation at 280 nm at constant temperature (25 °C) and constant relative humidity (50%) for several times. From tensile strength and Young’s Modulus measurements it was verified a high increase with initial UV irradiation times (till 100 h) and a slight reduction thereafter. The increase was higher in nanocomposites compared with neat HDPE, except these containing MWCNTs, and was attributed to the crystallinity increase in the particular samples. The mechanical properties reduction at higher UV irradiation times was attributed to the extensive macromolecular chain scission causing irregularities and holes in film surfaces. However, from FTIR study it was found that SiO2 and organically modified montmorillonite cause a serious effect on HDPE during UV degradation. New chemical compounds containing carbonyl, vinyl and hydroxyl groups were formed. It seems that these nanoparticles have an accelerating effect acting as catalysts to HDPE photo-oxidation. This was also verified from micro-Raman analysis. Untreated montmorillonite has also a small influencing effect while neat HDPE and nanocomposites containing multiwall carbon nanotubes have the highest UV stability.  相似文献   

16.
Resonance Raman spectroscopy/microscopy was used to study individualized single-walled carbon nanotubes (SWNTs) both in aqueous suspensions as well as after spin-coating onto Si/SiO2 surfaces. Four different SWNT materials containing nanotubes with diameters ranging from 0.7 to 1.6 nm were used. Comparison with Raman data obtained for suspensions shows that the surface does not dramatically affect the electronic properties of the deposited tubes. Raman features observed for deposited SWNTs are similar to what was measured for nanotubes directly fabricated on surfaces using chemical vapor deposition (CVD) methods. In particular, individual semiconducting tubes could be distinguished from metallic tubes by their different G-mode line shapes. It could also be shown that the high-power, short-time sonication used to generate individualized SWNT suspensions does not induce defects in great quantities. However, (additional) defects can be generated by laser irradiation of deposited SWNTs in air, thus giving rise to an increase of the D-mode intensity for even quite low power densities (approximately 10(4) W/cm2).  相似文献   

17.
The paper proposes a simple and portable approach for the surface enhanced Raman scattering (SERS) spectroscopy in situ determination of carboxylated single walled carbon nanotubes (SWNTs) in river water samples. The method is based on the subsequent microfiltration of a bare gold nanoparticles solution and the water sample containing soluble carbon nanotubes by using a home-made filtration device with a small filtration diameter. An acetate cellulose membrane with a pore size of 0.2 μm first traps gold nanoparticles to form the SERS-active substrate and then concentrates the carbon nanotubes. The measured SERS intensity data were closely fit with a Langmuir isotherm. A portable Raman spectrometer was employed to measure SERS spectra, which enables in situ determination of SWNTs in river waters. The limit of detection was 10 μg L−1. The precision, for a 10 mg L−1 concentration of carbon nanotubes, is 1.19% intra-membrane and 10.5% inter-membrane.  相似文献   

18.
MoS2 sheathed carbon nanotubes have been successfully synthesized using a hydrothermal route under controlled conditions. The resultant material was studied by XRD, EDS, HRTEM, and Raman spectroscopy. Advantages of the preparation presented here compared to other methods are: a) lower reaction temperature, b) high yield of sheathed nanotubes including ends and full body, c) simple process with non-toxic materials, and d) no damage inflicted to nanotubes.  相似文献   

19.
在900℃氢气气氛下,通过热分解载有硫代钼酸铵的碳纳米管前驱物得到MoS2/C复合纳米管.通过粉末X射线衍射(XRD)、拉曼光谱(Raman)、高分辨透射电镜(HRTEM)和X射线能量散射仪(EDS)等方法对其形貌、结构和成分进行了表征.结果表明,所合成物质是一种由两种材料组成管壁的新型纳米管.  相似文献   

20.
We have investigated the behavior of single-walled carbon nanotubes and nanospheres (C(60)) under high hydrostatic pressure using Raman spectroscopy over the pressure range 0.2-10 GPa using a diamond anvil cell. Different liquid mixtures were used as pressure transmission fluids (PTF). Comparing the pressure dependence of the Raman peak positions for the nanotubes and the nanospheres in different PTF leads to the observation of a number of new phenomena. The observed shift in Raman peak position of both radial and tangential modes as a function of applied pressure and their dependence on the PTF chemical composition can be rationalized in terms of adsorption of molecular species from the of PTF on to the surface of the carbon nanotubes and/or nanospheres. The peak shifts are fully reversible and take place at a comparatively modest pressure (2-3 GPa) that is far below pressures that might be required to collapse the nanoparticles. Surface adsorption of molecular species on the nanotube or nanospheres provides a far more plausible rational for the observed phenomena than ideas based on the notion of tube collapse that have been put forward in the recent literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号