首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two in‐line enrichment procedures (large volume sample stacking (LVSS) and field amplified sample injection (FASI)) have been evaluated for the CZE analysis of haloacetic acids (HAAs) in drinking water. For LVSS, separation on normal polarity using 20 mM acetic acid–ammonium acetate (pH 5.5) containing 20% ACN as BGE was required. For FASI, the optimum conditions were 25 s hydrodynamic injection (3.5 kPa) of a water plug followed by 25 s electrokinetic injection (?10 kV) of the sample, and 200 mM formic acid–ammonium formate buffer at pH 3.0 as BGE. For both FASI and LVSS methods, linear calibration curves (r2>0.992), limit of detection on standards prepared in Milli‐Q water (49.1–200 μg/L for LVSS and 4.2–48 μg/L for FASI), and both run‐to‐run and day‐to‐day precisions (RSD values up to 15.8% for concentration) were established. Due to the higher sensitive enhancement (up to 310‐fold) achieved with FASI‐CZE, this method was selected for the analysis of HAAs in drinking water. However, for an optimal FASI application sample salinity was removed by SPE using Oasis WAX cartridges. With SPE‐FASI‐CZE, method detection limits in the range 0.05–0.8 μg/L were obtained, with recoveries, in general, higher than 90% (around 65% for monochloroacetic and monobromoacetic acids). The applicability of the SPE‐FASI‐CZE method was evaluated by analyzing drinking tap water from Barcelona where seven HAAs were found at concentration levels between 3 and 13 μg/L.  相似文献   

2.
Capillary zone electrophoresis (CZE) was investigated for the determination of linear saturated carboxylic acid homologues ranging from C4 to C14. Separation conditions were optimised to overcome the problems of decreasing solubility and decreasing selectivity between successive homologues with increasing chain length. Separations were performed at 20°C, using a 20 kV separation voltage and a pH 8 electrolyte containing 30% methanol. A suitable chromophore (4-aminobenzoate) was added to ensure indirect UV detection of the analytes. Calibration curves and repeatability were established. Minimum detectable concentrations of 3·10−6 mol l−1 were achieved. Resolution between successive homologues was better than 2. The electrophoretic mobility of each homologue (n=7–14) was assessed and a quasi-linear relationship between the mobility value and 1/n was observed. The quantitative analysis of a diamide degradation solution was performed and compared to potentiometric results. The CZE method was also applied to the determination of C7–C14 partitioning between an organic medium containing tributylphosphate in n-dodecane and different basic solutions. Their behaviour was established according to the chain length and the pH of the aqueous phase. For C10–C14 compounds, results were validated by comparison with gas chromatographic analysis of the organic phases.  相似文献   

3.
Summary Physiological investigations of solute transport in plants affords knowledge of solute distribution between different tissues. Capillary electrophoresis using indirect UV and laser induced fluorescence (LIF) detection is demonstrated as a useful technique for the simultaneous determination of inorganic anions, amino acids and carboxylic acids in plant samples. Cell sap obtained from plant tissues as well as simple ethanolic or aqueous plant extracts can be analysed directly without any pretreatment. This matrix stability and the very small volumes required allow fast determinations of various compounds in small plant tissue sections. In the case of carboxylic acids, resolution can be optimized using calcium for selective complexation of some of the compounds. Selective and sensitive determination of amino acids is possible using precolumn derivatisation with orthophthaldialdehyde (OPA) and laser induced fluorescence detection. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

4.
Previous models for the retention behaviour of carboxylic acids in ion-exclusion chromatography are applicable only when the degree of ionisation of the analyte is constant over the entire chromatographic peak. When solutions of sulfuric acid are used as eluents, this condition applies only when the eluent concentration is considerably higher than that of the analyte. Since it is common for dilute solutions of sulfuric acid to be used as eluents, a retention model which accounts for unbuffered eluents has been developed. This model also considers the effects on retention of hydrophobic adsorption of the undissociated and dissociated forms of the analyte onto the stationary phase substrate, as well as the effects of organic solvents added to the eluent. The derivation of this model is presented and it has been evaluated using a comprehensive set of retention data obtained using three different sulfonated stationary phases over a range of eluent conditions. The adsorption coefficients calculated from the model are in accordance with expected trends and showed that both the undissociated and dissociated forms of the analyte acids were retained by hydrophobic adsorption effects, although this adsorption was much stronger for the undissociated analytes.  相似文献   

5.
Capillary zone electrophoresis (CZE) was investigated for the determination of linear saturated carboxylic acid homologues ranging from C4 to C14. Separation conditions were optimised to overcome the problems of decreasing solubility and decreasing selectivity between successive homologues with increasing chain length. Separations were performed at 20°C, using a 20 kV separation voltage and a pH 8 electrolyte containing 30% methanol. A suitable chromophore (4-aminobenzoate) was added to ensure indirect UV detection of the analytes. Calibration curves and repeatability were established. Minimum detectable concentrations of 3·10−6 mol l−1 were achieved. Resolution between successive homologues was better than 2. The electrophoretic mobility of each homologue (n=7–14) was assessed and a quasi-linear relationship between the mobility value and 1/n was observed. The quantitative analysis of a diamide degradation solution was performed and compared to potentiometric results. The CZE method was also applied to the determination of C7–C14 partitioning between an organic medium containing tributylphosphate in n-dodecane and different basic solutions. Their behaviour was established according to the chain length and the pH of the aqueous phase. For C10–C14 compounds, results were validated by comparison with gas chromatographic analysis of the organic phases.  相似文献   

6.
Capillary zone electrophoresis was investigated for the separation of free fatty acids as an alternative to well established techniques such as GC or HPLC. The analysis was performed with indirect UV detection in a counterelectroosmotic flow mode using a diethylbarbiturate carrier electrolyte at a pH between 10 and 11 in a mixed aqueous-organic solvent. Separation of saturated and unsaturated fatty acids could be achieved after bromination of the double bonds. Problems with wall adsorption of fatty acids could be overcome by increasing the temperature and using a high concentration of a zwitterionic reagent to inactivate the silica surface. Increased sensitivity could be achieved after preconcentration on alumina. The method was applied to the determination of free fatty acids in dairy products. The advantages compared to traditional methods include short analysis times and simple preparation steps.Dedicated to Univ. Prof. Dr. Karl Winsauer on the occasion of his 70th birthday  相似文献   

7.
Selected phenolic acids are determined by capillary zone electrophoresis and HPLC, each using UV detection. The optimised CZE background electrolyte contained 50 mM acetic acid, 95 mM 6-aminocaproic acid, 0.1% polyacrylamide, 1% polyvinylpyrrolidone, and 10% methanol. Twelve phenolic acids (gallic, p-hydroxybenzoic, 3,4-dihydroxybenzoic, vanillic, syringic, o-coumaric, p-coumaric, caffeic, sinapic, ferulic, salicylic and chlorogenic) were separated within 10 minutes. Chromatographic separation of these phenolic acids was carried out on an Eclipse XBD C8 column using a mobile phase gradient (acetonitrile / methanol / water / 0.1% phosphoric acid); all were separated within 25 minutes. Electrophoretic and chromatographic determinations of ferulic and chlorogenic acids were compared on barley, malt, and potato samples. The methods’ characteristics were: linearity (1–20 mg ml and 0.2–4 mg ml−1), accuracy (recovery 94 ± 5% and 96 ± 4%), intra-assay repeatability (4.1% and 3.5%), and detection limit (0.2 and 0.02 mg ml−1).   相似文献   

8.
Capillary zone electrophoresis (CZE) with indirect UV detection was used in developing a method for the simultaneous determination of inorganic anions, aliphatic and heterocyclic organic acids in various processed samples. The analytes were determined simultaneously in 10 min using an electrolyte containing 20 mM 2,3-pyrazine dicarboxylic acid, 65 mM tricine, 2 mM BaCl2, 0.5 mM cetyltrimethylammonium bromide, and 2 M urea at pH 8.06. Linear plots for the analytes were obtained in the concentration range of 2–150 mg L−1. Relative standard deviations (RSDs) of peak areas during a 3-day analysis period varied from 5.5% for glycolate to 9.5% for oxalate. RSDs of migration times varied between 0.4% and 1.1%. The detection limit (at S/N 3) was 1 mg L−1 for all the analytes studied. The proposed method was successfully demonstrated for the determination of carboxylic acids in eight oxygen treated samples of commercial softwood and hardwood kraft lignin and two red wine samples of Pinot Noir grapes. In the kraft lignin samples the concentrations of carboxylic acids correspond to the oxidation time. The acid concentrations of wine varied considerable.  相似文献   

9.
Capillary electrophoresis (CE) is a relatively new analytical technique that is just beginning to be employed in the area of pesticide residue analysis. With the development of more sensitive detectors and in conjunction with CE separation powers, it should be a well accepted technique for pesticide residue analysis in the future. This review describes CE methods that have been developed to analyze herbicides and grow regulators in water, soil and food.  相似文献   

10.
In this work, a capillary zone electrophoretic methodology using UV indirect detection (224 nm) for the analysis of fatty acids (FAs) in saponified oils is proposed. The electrolyte consisted of a 5 mmol l(-1) phosphate buffer, pH 7. containing 4 mmol l(-1) sodium dodecylbenzenesulfonate (SDBS) as chromophore, 4 mmol l(-1) dimethyl-beta-cyclodextrin and 45% acetonitrile (ACN). The composition of the electrolyte was optimized by a 2(3) factorial design with triplicate at the central point. The design established practical concentration boundaries for SDBS and ACN. In a defined concentration range of 2-4 l(-1), SDBS can certainly be used as a chromophore for indirect detection without imparting excessive baseline noise. For ACN, a suitable interval of 45-55% was found to enhance FAs solubilization without overflowing the system with bubble formation and current interruption. Additionally, the design revealed the importance of dimethyl-beta-cyclodextrin in the resolution of difficult pairs and its function as a solubilizing agent for long chain FAs. At the optimized conditions, nine FAs from C10 to C20, including mono- di- and tri-unsaturated C18 fatty acids were baseline separated in less than 10 min. The proposed method was applied to the separation of FAs in edible oils and polyunsaturated fatty acid enriched margarine. Additionally, spectral monitoring at 206 nm was used to confirm peak identity in the samples.  相似文献   

11.
A method is developed for the determination of a large number of airborne and vehicle-emitted low-molecular-mass mono- and dicarboxylic acids using capillary electrophoresis with indirect UV detection. A background electrolyte (BGE) consisting of 2,6-naphthalenedicarboxylic acid and tetradecylmethylammonium bromide, adjusted to pH 6.2 with 2,2-bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol, is employed. Separations are robust using the buffered BGE, proper rinse steps, and constant current mode with migration time variations less than 3% RSD on a day-to-day basis, using different capillaries and performed by different analysts. Detection limits are at the tens of μg/l level using pressure injection. A comparison of the CE method with ion chromatography is also made.  相似文献   

12.
Volpi N 《Electrophoresis》2004,25(12):1872-1878
The simultaneous determination of twelve different flavonoids, pinocembrin, acacetin, chrysin, rutin, catechin, naringenin, galangin, luteolin, kaempferol, apigenin, myricetin, and quercetin, two phenolic acids, cinnamic acid and caffeic acid, and one stilbene derivative, resveratrol, in propolis extracts used in medicine has been investigated by capillary zone electrophoresis (CZE). With a buffer constituted by sodium tetraborate 30 mM, pH 9.0, and 15 kV applied voltage, the 15 polyphenols were separated on an uncoated fused-silica capillary within 40 min using normal polarity. Under the experimental conditions used, a linear relationship was calculated between the CZE migration times and the molecular weight of polyphenols' expression of the increasing amount of their hydroxyl groups and polarity. Regression equations revealed a linear relationship (correlation coefficients > 0.97) between the peak area of each polyphenol species and their concentration, from 6 to 120 ng. The levels of analytes in three different propolis extracts, ethanolic, aqueous-ethanolic and aqueous-glycolic, used to prepare various commercial medicinal products, were determined. The aqueous-ethanolic propolis extract showed a great percentage of caffeic acid, galangin, quercetin, and chrysin, whilst the ethanolic preparation was composed of a great amount of resveratrol, chrysin, and caffeic acid. On the contrary, the aqueous-glycolic propolis preparation was composed of approx. 11% of caffeic acid and a low amount of the other identified flavonoids due to the presence of approx. 85% of nonidentified compounds. CZE represents a valuable method for the qualitative and quantitative assay of the most relevant polyphenol components of propolis, representing an alternative to obtain typical fingerprints of propolis and a reliable identification of a large number of propolis polyphenolic species.  相似文献   

13.
14.
The separation of haloacetic acids (HAAs) in water by capillary zone electrophoresis with direct UV and contactless conductivity detection was investigated using phosphate, citrate, and borate buffers, and the experimental data were compared to simulation data predicted by a computational program known as PeakMaster. Good agreement between the experimental data and simulation data predicted by PeakMaster was found. Using the phosphate buffer or the citrate buffer and electrokinetic injection it was possible to quantitate HAAs at 0.1 ppm levels in water.  相似文献   

15.
A sensitive capillary electrophoretic separation method with contactless conductivity detection (C4D) for analysis of five priority haloacetic acids (HAA5) is presented. The analytes were baseline separated in an electrolyte composed of 20 mM 2-(N-Morpholino) ethanesulfonic acid (MES), 20 mM L-histidine (HIS), and 30 μM cetyltrimethylammonium bromide (CTAB) at pH 6.0 in less than 4 min. A simplified solid-phase extraction (SPE) preconcentration procedure on highly cross-linked polystyrene-divinylbenzene (PS-DVB) type sorbent was developed and optimized with respect to short preconcentration time. HAA5 from a 25-mL sample aliquot of tap and swimming pool water could be preconcentrated in less than 5 min using an in-house made SPE column with recoveries ranging from 23 to 98%. Combining the SPE preconcentration procedure with capillary electrophoretic analysis, the attained limits of detection were between 6.1 and 12.2 μg/L with total analysis time of less than 10 min.  相似文献   

16.
The applicability of capillary electrophoresis (CE) in combination with atmospheric pressure ionization mass spectrometry (API-MS) is demonstrated for the determination of organic acids and in particular for haloacetic acids. CE-conditions, sheath flow and MS-parameters were optimized with respect to the separation of the analytes and mass spectrometric sensitivity. CE/MS turned out to be an attractive alternative for the determination of haloacetic acids to existing methods based on GC-ECD. Employing CE/MS derivatization is not necessary which saves time and avoids possible sources of errors. In the present work the sample pre-treatment is performed by liquid-liquid extraction using methyl tert.-butyl ether as the extraction solvent. The organic phase is brought to dryness in a stream of nitrogen gas and the residue is dissolved in methanol and analyzed by CE/MS using a mixture of 2-propanol/water 80?:?20 containing triethylamine as the sheath liquid in the interface. Best results for the separation of all nine possible bromo- and chloroacetic acids together with two internal standards are obtained with a carrier electrolyte consisting of ammonium acetate/acetic acid in methanol; to resolve the strongly acidic trihaloacetic acids as well as the less acidic monohaloacetic acids, a careful optimization of the acetic acid content is necessary. The method was applied to the determination of haloacetic acids in real water samples. With optimized CE and MS conditions detection limits between 0.3 and 7.6 μg/L in the original water samples were achieved, employing a sample volume of 30 mL.  相似文献   

17.
The applicability of capillary electrophoresis (CE) in combination with atmospheric pressure ionization mass spectrometry (API-MS) is demonstrated for the determination of organic acids and in particular for haloacetic acids. CE-conditions, sheath flow and MS-parameters were optimized with respect to the separation of the analytes and mass spectrometric sensitivity. CE/MS turned out to be an attractive alternative for the determination of haloacetic acids to existing methods based on GC-ECD. Employing CE/MS derivatization is not necessary which saves time and avoids possible sources of errors. In the present work the sample pre-treatment is performed by liquid-liquid extraction using methyl tert.-butyl ether as the extraction solvent. The organic phase is brought to dryness in a stream of nitrogen gas and the residue is dissolved in methanol and analyzed by CE/MS using a mixture of 2-propanol/water 80 : 20 containing triethylamine as the sheath liquid in the interface. Best results for the separation of all nine possible bromo- and chloroacetic acids together with two internal standards are obtained with a carrier electrolyte consisting of ammonium acetate/acetic acid in methanol; to resolve the strongly acidic trihaloacetic acids as well as the less acidic monohaloacetic acids, a careful optimization of the acetic acid content is necessary. The method was applied to the determination of haloacetic acids in real water samples. With optimized CE and MS conditions detection limits between 0.3 and 7.6 μg/L in the original water samples were achieved, employing a sample volume of 30 mL. Received: 4 May 1999 / Revised: 9 June 1999 / Accepted: 12 June 1999  相似文献   

18.
A simple, rapid and reproducible capillary isotachophoretic on-line coupled with capillary zone electrophoresis (CITP-CZE) method for the determination of IMz in food packaging extracts and its residues in apples is described. A good separation of the IMZ from other sample constituents was achieved within 15 minutes without any sample clean up. Method characteristics (linearity, accuracy, intra-assay and detection limit) were determined. Less amount of time involved, sufficient sensitivity and low running cost are the important attributes of CITP-CZE method.  相似文献   

19.
Twenty underivatized essential amino acids were separated using capillary zone electrophoresis and consequently detected with contactless conductivity detection (CCD). A simple acidic background electrolyte (BGE) containing 2.3 M acetic acid and 0.1% w/w hydroxyethylcellulose (HEC) allowed the electrophoretic separation and sensitive detection of all 20 essential amino acids in their underivatized cationic form. The addition of HEC to the BGE suppressed both, electroosmotic flow and analyte adsorption on the capillary surface resulting in an excellent migration time reproducibility and a very good analyte peak symmetry. Additionally, the HEC addition significantly reduced the noise and long-term fluctuations of the CCD baseline. The optimized electrophoretic separation method together with the CCD was proved to be a powerful technique for determination of amino acid profiles in various natural samples, like beer, yeast, urine, saliva, and herb extracts.  相似文献   

20.
The present paper provides the principles for chemiluminescence of luminol-type compounds and their wide and powerful application to the detection system in liquid chromatography and capillary electrophoresis as derivatization reagents. The reagents can be classified into two types, chemiluminescence labeling and chemiluminogenic reagents. The former reagents are highly chemiluminescent themselves and used for tagging their intense chemiluminophores to analytes, whereas the latter are weakly chemiluminescent but generate intense chemiluminescence by reaction with analytes. The liquid chromatographic methods utilizing chemiluminescence derivatizing reactions with luminol-type reagents allow the analytes to be detected at pmol–sub-fmol levels. Furthermore, the chemiluminogenic reactions show high selectivity owing to their selective reaction against the analytes permitting facile and reproducible detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号