首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat transfer characteristics around a single horizontal heated tube immersed in air fluidized bed was investigated, to clarify the mechanism of heat transfer in a fluidized bed heat exchanger. The local heat transfer coefficient around the tube was measured at various fluidization velocities and five different solid particles. The experimental values of the local heat transfer coefficient at the minimum fluidization velocity condition were correlated with the particle size in two empirical equations. The predicted results were in good agreement with the experiment data.  相似文献   

2.
An experimental investigation has been carried out on velocities and amplitudes of pressure disturbances in fluidized beds made of 100–200 μm glass ballotini. Disturbances were originated by gas jetting in a 0.35 m i.d. fluidized bed. A fluidization tube 0.10 m i.d. has also been used. Different types of disturbances have been induced in the bed contained in this tube: injection of a freely rising bubble and of a captive bubble; injection of a bubble chain; and compression of the bed free surface. The dynamic wave character of the disturbances has been shown. Velocities and amplitudes of waves moving through the beds have been measured. In particular, wave velocities have been compared with theoretical results obtained by the application of “pseudo-homogeneous” and “separated phase flow” models.  相似文献   

3.
Experiments were conducted to study the effect of tube inclination on nucleate pool boiling heat transfer for different tube diameters and surface roughness values. The results show that as the tube is tilted from the vertical to the horizontal, the temperatures at the top and bottom (with respect to circumference) increase and decrease, respectively. The increase and decrease is such that they almost compensate for each other, resulting in very little variation of the average heat transfer coefficient with tube inclination. The increase in bubble sliding length at the bottom wall and decrease in bubble sliding length at the top wall are thought to be the reasons for this behaviour. Experiments have been conducted with water, ethanol and acetone at atmospheric pressure, to confirm similar effects of inclination irrespective of fluid property.  相似文献   

4.
The challenges that microchannel flow boiling technology faces are the lack of understanding of underlying mechanisms of heat transfer during various flow boiling regimes and a dearth of analytical models that can predict heat transfer. This paper aims to understand flow boiling heat transfer mechanisms by analyzing results obtained by synchronously captured high-speed flow visualizations with local, transient temperature data. Using Inverse Heat Conduction Problem (IHCP) solution methodology, the transient wetted surface heat flux and temperature as well as heat transfer coefficient are calculated. These are then correlated with the visual data. Experiments are performed on a single microchannel embedded with fast response temperature sensors located (630 µm) below the wetted surface. The height, width and length of the microchannel are 0.42 mm, 2.54 mm and 25.4 mm respectively. De-ionized, de-gassed water is used as the working fluid. Two heat fluxes are tested at each of the mass fluxes of 182 kg/(m2s) and 380 kg/(m2s). Because of vapor confinement, slug flow is observed for the tested conditions. The present study provides detailed insights into the effect of various events such as passage of vapor slug, 3-phase contact line, partial-dry-out and liquid slug on transient heat transfer coefficient. Transient heat transfer coefficient peaks when thin film evaporation mechanism is prevalent. The peak value is influenced by the distance of bubble incipience as well as downstream events obstructing the flow. Heat transfer coefficient during the passage of liquid slug and 3-phase contact line were relatively lower for the tested experimental conditions.  相似文献   

5.
6.
Heat transfer characteristics in three-phase fluidized beds of floating bubble breakers have been studied in a 0.142 m I.D. x 2.0 m high Plexiglas column fitted with an axially mounted cylindrical heater.Effects of the liquid and gas velocities, the particle size, the volume ratio of floating bubble breaker to particles on phase holdup, the vertical bubble length, and the heat transfer coefficient have been determined.In the bubble-coalescing regime, the heat transfer coefficient in three-phase fluidized beds having the volume ratio Vf/Vs of 10–15% produced a maximum increase in heat transfer coefficient of about 20% in comparison to that in the bed without floating bubble breakers. Also, bubble length and gas-phase holdups exhibited their maximum and minimum values at a volume ratio of 10–15%. The heat transfer coefficient in three-phase fluidized beds of floating bubble breakers can be estimated from the surface renewal model with isotropic turbulence theory.Heat transfer coefficients expressed in terms of the Nusselt number have been correlated with the particle Reynolds number and the volume ratio of floating bubble breakers to particles.  相似文献   

7.
Experiments were performed to study the spatio-temporal temperature variation underneath growing bubbles on a thin platinum heating foil in saturated and subcooled nucleate pool boiling of water at atmospheric pressure. The transient wall temperature distributions were recorded with spatial resolution of 40 μm by a high-speed infrared camera at intervals of 1 ms, synchronised with a high-speed video camera to record bubble motion. Examples are presented of the transient distributions of wall temperature, heat flux and heat transfer coefficient underneath bubbles growing with the fast and slow bubble detachment mechanisms in saturated and subcooled pool boiling. Comments are made on the evidence for and against particular mechanisms of heat transfer.  相似文献   

8.
Boiling heat transfer measurements on a tube designed to yield the peripheral variation of heat transfer coefficient without interfering with the nucleation site density are presented. A variation of up to 25% around the tube is found with a maximum at the base. High speed cine photography was used to estimate the variation of mean bubble layer thickness and mean velocities with angle. An iterative heat balance around the periphery indicated a voidage decrease from about unity at the base to 0.3–0.6 at 90°  相似文献   

9.
In this study, experimental and simulation studies of the evaporation heat transfer coefficient and pressure drop of R-134a flowing through corrugated tubes are conducted. The test section is a horizontal counter-flow concentric tube-in-tube heat exchanger 2.0 m in length. A smooth tube and corrugated tubes with inner diameters of 8.7 mm are used as the inner tube. The outer tube is made from a smooth copper tube with an inner diameter of 21.2 mm. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm, respectively. The results show that the maximum heat transfer coefficient and pressure drop obtained from the corrugated tube are up to 22 and 19 % higher than those obtained from the smooth tube, respectively. In addition, the average difference of the heat transfer coefficient and pressure drop between the simulation model and experimental data are about 10 and 15 %, respectively.  相似文献   

10.
The hydrodynamic behavior of a cold-flow gas–solid fluidized bed with an inner diameter of 22 cm is investigated by means of an ultra-fast X-ray tomographic setup. In the case of an exothermal reaction, heat exchanger tubes are required to remove the reaction heat out of the bubbling fluidized bed reactor. For the examined cold-flow model, the heat exchanger tubes are replaced by vertical internals that serve as placeholder. The influence of vertical internals on the bubble properties for different spatial configurations (square and circular arrangements) is investigated in addition to measurements without internals. Furthermore, the hydrodynamic results of the Ø 22 cm column are compared with an available data set which is based on measurements that were conducted in a column with an inner diameter of 14 cm. The objective of this paper is to provide measurement data for the scale-up process as well as for various computer models simulating a bubbling fluidized bed with vertical internals. It was found that the scale-up process from pilot plants to an industrial scale may be simplified if vertical internals are present, independently of the geometric arrangement.  相似文献   

11.
In this paper, the hydrodynamics of a bubble formed during transient injection of air through a tube submerged in a pool of water has been studied. The experiments were performed by injecting air through vertical tubes varying in diameter from 0.9 to 9.5 cm and located in the middle of a 45 cm dia. and 120 cm high plexiglas chamber. The plexiglas chamber was partly filled with water and was open at the top to the outside. Data for bubble growth and vent line pressure histories are obtained under different upstream pressure conditions. Effect of presence of an orifice in the vent line on bubble growth has also been investigated.A theoretical model describing the bubble growth at the exit of a vent pipe submerged in a pool of water is developed. Predictions of bubble radius, line static pressure and uplift on the bottom of the test chamber have been made and are found to compare well with the data. Insertion of an orifice in the pipe line between the solenoid valve and the vent exit has been found to inhibit the bubble expansion as well as alter the bubble oscillation characteristics.  相似文献   

12.
Experiments were conducted to analyze flow boiling characteristics of water in a single brass microchannel of 25 mm length, 201 μm width, and 266 μm depth. Different heat flux conditions were tested for each of two different mass flow rates over three different values of inlet fluid temperature. Temporal and spatial surface temperature profiles were analyzed to show the relative effect of axial heat conduction on temperature rise along the channel length and the effect of flow regime transition on local surface temperature oscillation. Vapor bubble growth rate increased with increasing wall superheat. The slower a bubble grew, the further it was carried downstream by the moving liquid. Bubble growth was suppressed for increased mass flux while the vapor bubble was less than the channel diameter. The pressure spike of an elongating vapor bubble was shown to suppress the growth of a neighboring bubble by more than 50% of its volume. An upstream progression of the Onset of Bubble Elongation (OBE) was observed that began at the channel exit and progressed upstream. The effects of conjugate heat transfer were observed when different flow regime transitions produced different rates of progression for the elongation sequence. Instability was observed at lower heat fluxes for this single channel experiment than for similar studies with multiple channels.  相似文献   

13.
Bottom bed regimes in a circulating fluidized bed boiler   总被引:1,自引:0,他引:1  
This paper extends previous work on the fluidization regimes of the bottom bed of circulating flyidized bed (CFB) boilers. Pressure measurements were performed to obtain the time-average bottom bed voidage and to study the bed pressure fluctuations. The measurements were carried out in a 12 MWth CFB boiler operated at 850°C and also under ambient conditions (40°C). Two bubbling regimes were identified: a “single bubble regime” with large single bubbles present at low fluidization velocities, and, at high fluidization velocities, an “exploding bubble regime” with bubbles often stretching all the way from the air distributor to the surface of the bottom bed. The exploding bubble regime results in a high through-flow of gas, indirectly seen from the low average voidage of the bottom bed, which is similar to that of a stationary fluidized bed boiler, despite the higher gas velocities in the CFB boiler. Methods to determine the fluidization velocity at the transition from the single to the exploding bubble regime are proposed and discussed. The transition velocity increases with an increase in particle size and bed height.  相似文献   

14.
Laminar mixed convection of a nanofluid consisting of Al2O3 and water through an inclined tube has been investigated numerically. As mathematical model two-phase mixture model has been adopted, thus three dimensional elliptical governing equations have been solved to understand the flow behavior at different Re–Gr combinations. Control volume technique is used for discretization of the governing equations. For the convective and diffusive terms the second order upwind method was used while the SIMPLEC procedure was adopted for the velocity–pressure coupling. For different nanoparticle mean diameters and tube inclinations thermo-fluid parameters such as secondary flow, axial velocity profiles, nanoparticles distribution at the tube cross section, axial evolution of peripheral average convective heat transfer coefficient and pressure drop along the tube, have been presented and discussed. Maximum enhancement on the heat transfer coefficient is seen at tube inclination of 45°.  相似文献   

15.
An experimental investigation was performed to compare the boiling heat transfer coefficients and two-phase pressure drops from a square inline and a staggered tube bundle having the same tube pitch-to-diameter ratio (P/D = 1.30) and from two square inline tube bundles having different pitch-to-diameter ratios (P/D = 1.30 and 1.70). Except at the highest heat fluxes the heat transfer coefficients generally were higher in the staggered tube bundle than in the inline tube bundle and higher in the larger P/D tube bundle than in the smaller. As the heat flux increased, the differences decreased. The differences were attributed to the tradeoff between nucleation and convection. The staggered tube bundle had higher pressure drops than the inline bundle except at low mass velocities; the larger pressure drop in the staggered bundle was attributed to the combination of a larger void fraction and a larger friction multiplier, with the frictional component dominating at higher mass velocities. Comparing the inline tube bundle pressure drops, it was concluded that the larger P/D bundle had a larger void fraction than the smaller P/D tube bundle; no conclusions could be drawn regarding the relative magnitude of the two-phase fraction multiplier.  相似文献   

16.
The flow boiling heat transfer coefficients of R-134a/R-290/R-600a (91%:4.068%:4.932% by mass) refrigerant mixture are experimentally arrived in two tubes of diameter 9.52 and 12.7 mm. The tests are conducted to target the varied heat flux condition and stratified flow pattern found in evaporators of refrigerators and deep freezers. The varied heat flux condition is imposed on the refrigerant using a coaxial counter-current heat exchanger test section. The experiments are performed for mass flow rates of the refrigerant mixture between 3 and 5 g s−1 and entry temperature between −8.59 and 5.33°C which are bubble temperatures corresponding to a pressure of 3.2 and 5 bar. The influences of heat flux, mass flow rate, pressure, flow pattern, tube diameter on the heat transfer coefficient are discussed. The profound effects of nucleate boiling prevailing even at higher vapor qualities in evaporators are highlighted. The heat transfer coefficient of the refrigerant mixture is also compared with that of R-134a.  相似文献   

17.
Injection of sub-millimeter bubbles is considered a promising technique for enhancing natural convection heat transfer for liquids. So far, we have experimentally investigated heat transfer characteristics of laminar natural convection flows with sub-millimeter bubbles. However, the effects of the bubble size on the heat transfer have not yet been understood. The purpose of this study is to clarify the effects of the bubble size on the heat transfer enhancement for the laminar natural convection of water along a vertical heated plate with uniform heat flux. Temperature and velocity measurements, in which thermocouples and a particle tracking velocimetry technique are, respectively used, are conducted to investigate heat transfer and flow characteristics for different bubble sizes. Moreover, two-dimensional numerical simulations are performed to comprehensively understand the effects of bubble injection on the flow near the heated plate. The result shows that the ratio of the heat transfer coefficient with sub-millimeter-bubble injection to that without injection ranges from 1.3 to 2.2. The result also shows that for a constant bubble flow rate, the heat transfer coefficient ratio increases with a decrease in the mean bubble diameter. It is expected from our estimation based on both experimental data and simulation results that this increase results from an increase in the advection effect due to bubbles.  相似文献   

18.
Flow boiling heat transfer in a vertical spirally internally ribbed tube   总被引:3,自引:0,他引:3  
 Experiments of flow boiling heat transfer and two-phase flow frictional pressure drop in a spirally internally ribbed tube (φ22×5.5 mm) and a smooth tube (φ19×2 mm) were conducted, respectively, under the condition of 6×105 Pa (absolute atmosphere pressure). The available heated length of the test sections was 2500 mm. The mass fluxes were selected, respectively, at 410, 610 and 810 kg/m2 s. The maximum heat flux was controlled according to exit quality, which was no more than 0.3 in each test run. The experimental results in the spirally internally ribbed tube were compared with that in the smooth tube. It shows that flow boiling heat transfer coefficients in the spirally internally ribbed tube are 1.4–2 times that in the smooth tube, and the flow boiling heat transfer under the condition of smaller temperature differences can be achieved in the spirally internally ribbed tube. Also, the two-phase flow frictional pressure drop in the spirally internally ribbed tube increases a factor of 1.6–2 as compared with that in the smooth tube. The effects of mass flux and pressure on the flow boiling heat transfer were presented. The effect of diameters on flow boiling heat transfer in smooth tubes was analyzed. Based on the fits of the experimental data, correlations of flow boiling heat transfer coefficient and two-phase flow frictional factor were proposed, respectively. The mechanisms of enhanced flow boiling heat transfer in the spirally internally ribbed tube were analyzed. Received on 1 December 1999  相似文献   

19.
Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25–2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500–4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.  相似文献   

20.
This paper presents the results of an experimental study carried out with R-134a during flow boiling in a horizontal tube of 2.6 mm ID. The experimental tests included (i) heat fluxes in the range from 10 to 100 kW/m2, (ii) the refrigerant mass velocities set to the discrete values in the range of 240-930 kg/(m2 s) and (iii) saturation temperature of 12 and 22 °C. The study analyzed the heat transfer, through the local heat transfer coefficient along of flow, and pressure drop, under the variation of these different parameters. It was possible to observe the significant influence of heat flux in the heat transfer coefficient and mass velocity in the pressure drop, besides the effects of saturation temperature. In the low quality region, it was possible to observe a significant influence of heat flux on the heat transfer coefficient. In the high vapor quality region, for high mass velocities, this influence tended to vanish, and the coefficient decreased. The influence of mass velocity in the heat transfer coefficient was detected in most tests for a threshold value of vapor quality, which was higher as the heat flux increased. For higher heat flux the heat transfer coefficient was nearly independent of mass velocity. The frictional pressure drop increased with the increase in vapor quality and mass velocity. Predictive models for heat transfer coefficient in mini channels were evaluated and the calculated coefficient agreed well with measured data within a range 35% for saturation temperature of 22 °C. These results extend the ranges of heat fluxes and mass velocities beyond values available in literature, and add a substantial contribution to the comprehension of boiling heat transfer phenomena inside mini channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号