首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly sensitive and mercury-free method for determination of bisphenol A (BPA) was established using a glassy carbon electrode that was modified with carboxylated multi-walled carbon nanotubes. A sensitive oxidation peak is found at 550?mV in linear sweep voltammograms at pH?7. Based on this finding, trace levels of bisphenol A can be determined over a concentration range that is linear from 10?nM to 104?nM, the correlation coefficient being 0.9983, and the detection limit (S/N?=?3) being 5.0?nM. The method was successfully applied to the determination of BPA in food package.
Figure
A new electrochemical method was developed for the determination of bisphenol A based on carboxylated multi-walled carbon nanotubes modified electrode.  相似文献   

2.
A highly sensitive method was developed for the simultaneous determination of ten sulfonamides in pork and chicken samples by monolith-based stir bar sorptive extraction (SBSE) coupled to high-performance liquid chromatography tandem mass spectrometry. The samples were freeze-dried and extracted by acetonitrile, then enriched and further extracted by SBSE which was based on poly(vinylphthalimide-co-N,N-methylenebisacrylamide) monolith (SBSE-VPMB) as coating. To achieve optimum extraction performance of SBSE for sulfonamides, several parameters, including pH value and ionic strength in the sample matrix and extraction and desorption time, were investigated in detail. Under the optimal conditions, the limits of detection (S/N?=?3) for target sulfonamides were 1.2–6.1 ng/kg in pork and 2.0–14.6 ng/kg in chicken, respectively. Real samples spiked at the concentration of 0.5 and 5.0 μg/kg showed recoveries above 55 % and relative standard deviations below 12 %. At the same time, the extraction performances of target sulfonamides on SBSE-VPMB were compared with other SBSE based on porous monolith and commercial SBSE.
Figure
?  相似文献   

3.
In collisional activation of argentinated N-arylmethyl-pyridin-2-ylmethanimine, a neutral molecule of AgNH2 is eliminated, carrying one hydrogen from the methylene and the other one from the ortho position (relative to the ipso carbon) of the aryl ring. Taking argentinated N-benzyl-pyridin-2-ylmethanimine for example, the proposition that the AgNH2 loss results from intramolecular arylmethyl transfer combined with cyclodeamination is rationalized by deuterium labeling experiments, blocking experiments, and theoretical calculations. The structure of the final product ion from loss of AgNH2 was confirmed further by multistage mass spectrometry.
Figure
?  相似文献   

4.
Enzyme assays of β-N-acetylhexosaminidase from Aspergillus oryzae using capillary electrophoresis in the offline and online setup have been developed. The pH value and concentration of the borate-based background electrolyte were optimized in order to achieve baseline separation of N,N′,N″-triacetylchitotriose, N,N′-diacetylchitobiose, and N-acetyl-d-glucosamine. The optimized method using 25 mM tetraborate buffer, pH 10.0, was evaluated in terms of repeatability, limits of detection, quantification, and linearity. The method was successfully applied to the offline enzyme assay of β-N-acetylhexosaminidase, which was demonstrated by monitoring the hydrolysis of N,N′,N″-triacetylchitotriose. The presented method was also utilized to study the pH dependence of enzyme activity. An online assay with N,N′-diacetylchitobiose as a substrate was developed using the Transverse Diffusion of Laminar Flow Profiles model to optimize the injection sequence and in-capillary mixing of substrate and enzyme plugs. The experimental results were in good agreement with predictions of the model. The online assay was successfully used to observe the inhibition effect of N,N′-dimethylformamide on the activity of β-N-acetylhexosaminidase with nanoliter volumes of reagents used per run and a high degree of automation. After adjustment of background electrolyte pH, an online assay with N,N′,N″-triacetylchitotriose as a substrate was also performed.
Figure
Electropherograms resulting from online enzyme assays of β-N-acetylhexosaminidase for chitobiose as a substrate with 10-min (red line), 5-min (blue line) and 0-min (black line) reaction time. Peak identification: 1 chitobiose, 2 N-acetylglucosamine  相似文献   

5.
Three polyampholyte gels (G1 to G3) composed of acrylic acid (AA), 1-vinylimidazole (VI) and N-isopropylacrylamide (NIPA) were prepared: G1 with a pre-gel solution (pH?≈?12) containing NIPA (700 mM), AA (150 mM), VI (150 mM) and N,N′-methylenebis(acrylamide) (10 mM); G2 with the same pre-gel, except for containing poly(acrylic acid) (PAA) (150 unit mM) instead of AA; and G3 with the same pre-gel, except for containing poly(1-vinylimidazole) (PVI) (150 unit mM) instead of VI. The immobilization of PAA ( $ {\overline M_{\text{w}}} = {2}0{5},000 $ ) and PVI ( $$ {\overline M_{\text{w}}} = <$> <$>35,900 $$ ) resulted in transparent G2 and G3, respectively, while G3 with another PVI ( $ {\overline M_{\text{w}}} = {193},000 $ ) was opaque. Potentiometric titrations and swelling measurements of an anionic and a cationic copolymer gel (as a control sample) suggested that each polyampholyte gel exhibits an isoelectric point (pI) at pH?≈?5.6, at which the electrostatic attraction between the carboxylate and imidazole ions leads to gel collapse. Indeed, all the ampholyte gels underwent a collapse transition at pH around the pI upon cyclic pH changes (first increased and then decreased). The pH region where gel collapse was observed, however, was broader for G2 and G3 (with immobilized polyions) than for G1 (random terpolymer gel). The swelling/deswelling characteristics of transparent and opaque G3 gels were different from each other, and also from those of G1 and G2. These results were discussed in terms of the role of hydrogen bonding of the amide with the carboxyl or imidazole groups in the collapse transition of the ampholyte gels.  相似文献   

6.
A method based on reverse atom transfer radical polymerization (R-ATRP) and molecular crowding has been used for design and synthesis of monolithic molecularly imprinted polymers (MIPs) capable of recognizing ibuprofen (IBU). 4-Vinylpyridine (4-VP) was used as the functional monomer, and ethylene glycol dimethacrylate (EDMA) was the crosslinking monomer. Azobisisobutyronitrile (AIBN)–CuCl2N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) was used as the initiating system. Compared with conventional radical polymerization-based IBU-MIPs, the imprinting effects of the obtained IBU-MIPs was enhanced, suggesting the merit of combination of reverse ATRP and molecular crowding. In addition, it was found that the polymerization time of the molecularly imprinted monolithic column, the amount of template, the degree of crosslinking, and the composition of mobile phase greatly affected retention of the template and the performance of molecular recognition .
Figure
Schematic representation of molecular imprinting under molecular crowding conditions in the presence of R-ATRP  相似文献   

7.
Development of prodrugs is a promising alternative to address cytotoxicity and nonspecificity of common anticancer agents. N-l-leucyldoxorubicin (LeuDox) is a prodrug that is biotransformed to the anticancer drug doxorubicin (Dox) in the extracellular space; however, its biotransformation may also occur intracellularly in endocytic organelles. Such organelle-specific biotransformation is yet to be determined. In this study, magnetically enriched endocytic organelle fractions from human uterine sarcoma cells were treated with LeuDox. Micellar electrokinetic chromatography with laser-induced fluorescence detection (MEKC-LIF) was used to determine that 10 % of LeuDox was biotransformed to Dox, accounting for ~43 % of the biotransformation occurring in the post-nuclear fraction. This finding suggests that endocytic organelles also participate in the intracellular biotransformation of LeuDox to Dox.
Figure
MEKC-LIF monitors the biotransformation of N-l-leucyldoxorubicin to doxorubicin specific to magnetically enriched endocytic organelles  相似文献   

8.
A method using on-line solid-phase microextraction (SPME) on a carbowax-templated fiber followed by liquid chromatography (LC) with ultraviolet (UV) detection was developed for the determination of triclosan in environmental water samples. Along with triclosan, other selected phenolic compounds, bisphenol A, and acidic pharmaceuticals were studied. Previous SPME/LC or stir-bar sorptive extraction/LC-UV for polar analytes showed lack of sensitivity. In this study, the calculated octanol–water distribution coefficient (log D) values of the target analytes at different pH values were used to estimate polarity of the analytes. The lack of sensitivity observed in earlier studies is identified as a lack of desorption by strong polar–polar interactions between analyte and solid-phase. Calculated log D values were useful to understand or predict the interaction between analyte and solid phase. Under the optimized conditions, the method detection limit of selected analytes by using on-line SPME-LC-UV method ranged from 5 to 33 ng?L?1, except for very polar 3-chlorophenol and 2,4-dichlorophenol which was obscured in wastewater samples by an interfering substance. This level of detection represented a remarkable improvement over the conventional existing methods. The on-line SPME-LC-UV method, which did not require derivatization of analytes, was applied to the determination of TCS including phenolic compounds and acidic pharmaceuticals in tap water and river water and municipal wastewater samples.
Figure
Schematic diagram of the On-line solid-phase microextraction  相似文献   

9.
Herein, we represent a simple method for the detection and characterization of molecular species of triacylglycerol monohydroperoxides (TGOOH) in biological samples by use of reversed-phase liquid chromatography with a LTQ Orbitrap XL mass spectrometer (LC/LTQ Orbitrap) via an electrospray ionization source. Data were acquired using high-resolution, high-mass accuracy in Fourier-transform mode. Platform performance, related to the identification of TGOOH in human lipoproteins and plasma, was estimated using extracted ion chromatograms with mass tolerance windows of 5 ppm. Native low-density lipoproteins (nLDL) and native high-density lipoproteins (nHDL) from a healthy donor were oxidized by CuSO4 to generate oxidized LDL (oxLDL) and oxidized HDL (oxHDL). No TGOOH molecular species were detected in the nLDL and nHDL, whereas 11 species of TGOOH molecules were detected in the oxLDL and oxHDL. In positive-ion mode, TGOOH was found as [M + NH4]+. In negative-ion mode, TGOOH was observed as [M + CH3COO]. TGOOH was more easily ionized in positive-ion mode than in negative-ion mode. The LC/LTQ Orbitrap method was applied to human plasma and three molecular species of TGOOH were detected. The limit of detection is 0.1 pmol (S/N?=?10:1) for each synthesized TGOOH.
Figure
Analysis of triacylglycerol hydroperoxides in human lipoproteins by Orbitrap mass spectrometer  相似文献   

10.
Poly (N-isopropylacrylamide-co-N-(3-aminopropyl) methacrylamide hydrochloride) microgel-based optical devices (etalons) have been shown to change their optical properties in the presence of single-stranded DNA. We hypothesize that this is due to the negatively charged DNA penetrating through the Au overlayer of the etalon, resulting in cross-linking and collapse of the positively charged microgels. We have shown that this technology is capable of detecting micromolar concentrations of target DNA in solutions containing two and four base pair mismatch sequences without the use of labels. Furthermore, the device’s response increases as the concentration of DNA decreases, which is unique for sensing strategies. We point out that coupling this transduction mechanism to DNA amplification strategies could result in extremely low detection limits.
Figa
A polymer-based sensor was developed for the label-free detection of a target DNA (TDNA) sequence in a mixture of interfering DNA  相似文献   

11.
N-Linked glycosylation is a major protein modification involved in many essential cellular functions. Methods capable of quantitative glycan analysis are highly valuable and have been actively pursued. Here we describe a novel N-glycosylamine-based strategy for isotopic labeling of N-linked glycans for quantitative analysis by use of mass spectrometry (MS). This strategy relies on the primary amine group on the reducing end of freshly released N-linked glycans for labeling, and eliminates the need for the harsh labeling reaction conditions and/or tedious cleanup procedures required by existing methods. By using NHS-ester amine chemistry we used this strategy to label N-linked glycans from a monoclonal antibody with commercially available tandem mass tags (TMT). Only duplex experiments can be performed with currently available TMT reagents, because quantification is based on the intensity of intact labeled glycans. Under mild reaction conditions, greater than 95 % derivatization was achieved in 30 min and the labeled glycans, when kept at ?20 °C, were stable for more than 10 days. By performing glycan release, TMT labeling, and LC–MS analysis continuously in a single volatile aqueous buffer without cleanup steps, we were able to complete the entire analysis in less than 2 h. Quantification was highly accurate and the dynamic range was large. Compared with previously established methods, N-glycosylamine-mediated labeling has the advantages of experimental simplicity, efficient labeling, and preserving glycan integrity.
Principle of N-Glycosylamine-mediated isotope labeling for mass spectrometry-based quantitative analysis of N-linked glycans  相似文献   

12.
Gram-negative bacteria use N-acylhomoserine lactones (AHLs) as their command language to coordinate population behavior during invasion and colonization of higher organisms. Although many different bacterial bioreporters are available for AHLs monitoring, in which a phenotypic response, e.g. bioluminescence, violacin production, and β-galactosidase activity, is exploited, mass spectrometry (MS) is the most versatile detector for rapid analysis of AHLs in complex microbial samples, with or without prior separation steps. In this paper we critically review recent advances in the application of high-resolution MS to analysis of the quorum sensing (QS) signaling molecules used by Gram-negative bacteria, with much emphasis on AHLs. A critical review of the use of bioreporters in the study of AHLs is followed by a short methodological survey of the capabilities of high-resolution mass spectrometry (HRMS), including Fourier-transform ion cyclotron resonance (FTICR) MS and quadrupole time-of-flight (qTOF) MS. Use of infusion electrospray ultrahigh-resolution FTICR MS (12 Tesla) enables accurate mass measurements for determination of the elemental formulas of AHLs in Acidovorax sp. N35 and Burkholderia ubonensis AB030584. Results obtained by coupling liquid chromatography with a hybrid quadrupole linear ion trap-FTICR mass spectrometer (LC–LTQ-FTICRMS, 7-T) for characterization of acylated homoserine lactones in the human pathogen Pseudomonas aeruginosa are presented. UPLC–ESI-qTOF MS has also proved to be suitable for identification of 3O-C10HSL in Pseudomonas putida IsoF cell culture supernatant. Aspects of sample preparation and the avoidance of analytical pitfalls are also emphasized.
Figure
LC separation and FTICR MS identification of 3-oxo-C12-HSL in bacterial isolates of P. aeruginosa (strain ATCC 9027)  相似文献   

13.
By employing a novel technique for the direct coupling of a bacterial bioassay with chromatography, we discovered a gyrA promotor active compound in myxobacterial extracts and elucidated the structure directly without any isolation step. As a result, we identified inthomycin A as the bioactive substance. Our method is based on a whole-cell bioluminescent reporter gene assay coupled with thin-layer chromatography for primary hit detection and with liquid chromatography (LC)/mass spectrometry or LC/NMR for dereplication and structure elucidation. Previously, inthomycin A has been isolated from Streptomycetes and was associated with the inhibition of cellulose biosynthesis and herbicidal activity. Thus, our findings support the basic principle that completely different microbial phyla are able to synthesize the same natural product. Moreover, our results indicate that inthomycin A affects bacterial DNA supercoiling, which reveals an unexpected bioactivity for this compound. These results can possibly promote further investigation of the biosynthesis as well as the biological activity of inthomycins and related natural products.
Figure
  相似文献   

14.
Glucose oxidase (GOx) from Penicillium funiculosum 46.1 was purified using step-by-step ultrafiltration and it was characterized by spectrophotometric and spectrofluorometric methods. It was shown that spectra of GOx produced by P. funiculosum are typical for flavoproteins. Absorption spectrum has distinct peaks at 380 and 457 nm, excitation spectrum at 373 and 447 nm, and emission spectrum at 530 and 562 nm. The pH correlation of enzyme activity and catalytic characteristics in various buffer systems (phosphate (pH 5.0–9.0), citrate (pH 3.0–5.0), citrate-phosphate (pH 3.0–9.0), and universal (pH 3.0–9.0)) were registered. It was determined that the GOx is the most efficiently interacting with substrate (glucose) in phosphate buffer at pH 7.0 with k cat/K m?=?21,825 M?1 s?1. Interaction of several different redox mediators (9,10-phenantroline-5,6-dione, 9,10-phenanthrenequinone, N-methylphenazonium methyl sulfate, ferrocene, ferrocenecarboxylic acid, α-methylferrocenemethanol, ferrocenecarboxaldehyde) with GOx from P. funiculosum was investigated by evaluation of the difference in fluorescence emission intensity of FAD(oxidized) and FADH2(reduced) forms. It was found that 9,10-phenantroline-5,6-dione and 9,10-phenanthrenequinone are the best redox mediators for this type of GOx.
Figure
?  相似文献   

15.
We report on a glassy carbon electrode (GCE) modified with a lead ionophore and multiwalled carbon nanotubes. It can be applied to square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) for 300?s in pH?4.5 acetate buffer containing 400?μg?L?1 of Bi(III). The ionophore-MWCNTs film on the GCE possesses strong and highly selective affinity for Pb(II) as confirmed by quartz crystal microbalance experiments. Under the optimum conditions, a linear response was observed for Pb(II) ion in the range from 0.3 to 50?μg?L?1. The limit of detection (at S/N?=?3) is 0.1?μg?L?1. The method was applied to the determination of Pb(II) in water samples with acceptable recovery.
Figure
A glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes is successfully applied to sensitive and selective square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) in pH?4.5 solutions containing 400?μg?L?1 of Bi(III).  相似文献   

16.
We present plasma-assisted reaction chemical ionization (PARCI) for elemental analysis of halogens in organic compounds. Organohalogens are broken down to simple halogen-containing molecules (e.g., HBr) in a helium microwave-induced plasma followed by negative mode chemical ionization (CI) in the afterglow region. The reagent ions for CI originate from penning ionization of gases (e.g., N2) introduced into the afterglow region. The performance of PARCI-mass spectrometry (MS) is evaluated using flow injection analyses of organobromines, demonstrating 5–8 times better sensitivities compared with inductively coupled plasma MS. We show that compound-dependent sensitivities in PARCI-MS mainly arise from sample introduction biases.
Figure
?  相似文献   

17.
We have prepared a hydrophilic molecularly imprinted polymer (MIP) for the hydrophobic compound bisphenol A (BPA) in aqueous solution using 3-acrylamido-N,N,N-trimethylpropan-1-aminium chloride (AMTC) as the functional monomer. Under redox-polymerization conditions, BPA forms an ion-pair with AMTC, which was confirmed by 1H-NMR titration. The imprinting effect in aqueous solution was evaluated by comparison of this material with the corresponding non-imprinted polymer (NIP) and with a control polymer (CP) bearing no AMTC. The MIP showed the highest activity among the three polymers, and the imprinting factors as calculated from the amount of BPA bound to the MIP divided by the amounts bound to NIP and CP, respectively, are 1.8 and 6.0. The MIP was selective for BPA in aqueous solution, while structurally related compounds are not recognized. Such a selectivity for a hydrophobic compound is rarely observed in aqueous medium because non-specific binding of BPA inevitably leads to hydrophobic interaction.
Figure
A hydrophilic molecularly imprinted polymer (MIP) for bisphenol A (BPA) recognition was prepared in aqueous solution. The obtained MIP (BPA-MIP) showed good selectivity under aqueous conditions  相似文献   

18.
A comparative study of the electrochemical conversion and the biotransformation performed by the cytochrome P450 (CYP450) obtained by rat liver microsomes has been achieved to elucidate the oxidation mechanism of both acebutolol and alprenolol. For this purpose, a wide range of reactions such as N-dealkylation, O-dealkoxylation, aromatic hydroxylation, benzyl hydroxylation, alkyl hydroxylation, and aromatic hydroxylation have been examined in this study, and their mechanisms have been compared. Most of the results of the electrochemical oxidation have been found to be in accordance with those obtained by incubating acebutolol and alprenolol in the presence of CYP450, i.e., N-dealkylation, benzyl hydroxylation, and O-dealkoxylation reactions catalyzed by liver microsomes were found to be predicted by the electrochemical oxidation. The difficulty for the electrochemical process to mimic both aromatic and alkyl hydroxylation reactions has also been discussed, and the hypothesis for the absence of aromatic hydroxylated and alkyl hydroxylated products, respectively, for alprenolol and acebutolol, under the anodic oxidation has been supported by theoretical calculation. The present study highlights the potential and limitation of coupling of electrochemistry–liquid chromatography–high-resolution mass spectrometry for the study of phase I and phase II reactions of acebutolol and alprenolol.
Figure
The electrochemical conversion versus the biotransformation catalyzed by CYP450  相似文献   

19.
This paper presents a novel splitting method for liquid chromatography/mass spectrometry (LC/MS) application, which allows fast MS detection of LC-separated analytes and subsequent online analyte collection. In this approach, a PEEK capillary tube with a micro-orifice drilled on the tube side wall is used to connect with LC column. A small portion of LC eluent emerging from the orifice can be directly ionized by desorption electrospray ionization (DESI) with negligible time delay (6~10 ms) while the remaining analytes exiting the tube outlet can be collected. The DESI-MS analysis of eluted compounds shows narrow peaks and high sensitivity because of the extremely small dead volume of the orifice used for LC eluent splitting (as low as 4 nL) and the freedom to choose favorable DESI spray solvent. In addition, online derivatization using reactive DESI is possible for supercharging proteins and for enhancing their signals without introducing extra dead volume. Unlike UV detector used in traditional preparative LC experiments, this method is applicable to compounds without chromophores (e.g., saccharides) due to the use of MS detector. Furthermore, this splitting method well suits monolithic column-based ultra-fast LC separation at a high elution flow rate of 4 mL/min.
Figure
?  相似文献   

20.
Droserae herba is a drug commonly used for treatment of convulsive or whooping cough since the seventeenth century. Because of the contribution of flavonoids and ellagic acid derivatives to the therapeutic activity of Droserae herba, an LC?CDAD method has been developed for quantification of these analytes in four Drosera species used in medicine (Drosera anglica, D. intermedia, D. madagascariensis, and D. rotundifolia). During elaboration of the method 13 compounds, including three substances not previously described for Drosera species, were detected and unambiguously identified by means of extensive LC?CMS and LC?CNMR experiments and by off-line heteronuclear 2D NMR after targeted isolation. The most prominent component of D. rotundifolia and D. anglica, 2??-O-galloylhyperoside, with myricetin-3-O-??-glucopyranoside and kaempferol-3-O-(2??-O-galloyl)-??-galactopyranoside, were identified for the very first time in this genus. The LC?CDAD method for quantification was thoroughly validated, and enables, for the first time, separation and precise analysis of these analytes in Droserae herba. Simple sample preparation and use of a narrow-bore column guarantee low cost and simplicity of the suggested system, which is excellently suited to quality control of the drug or herbal medicinal products containing this drug.
Figure
2??-O-galloylhyperoside - a major compound in Drosera anglica and Drosera rotundifolia  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号