首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reconsider the theory of the half-filled lowest Landau level using the Chern-Simons formulation and study the grand-canonical potential in the random-phase approximation (RPA). Calculating the unperturbed response functions for current- and charge-density exactly, without any expansion with respect to frequency or wave vector, we find that the integral for the ground-state energy converges rapidly (algebraically) at large wave vectors k, but exhibits a logarithmic divergence at small k. This divergence originates in the k-2 singularity of the Chern-Simons interaction and it is already present in lowest-order perturbation theory. A similar divergence appears in the chemical potential. Beyond the RPA, we identify diagrams for the grand-canonical potential (ladder-type, maximally crossed, or a combination of both) which diverge with powers of the logarithm. We expand our result for the RPA ground-state energy in the strength of the Coulomb interaction. The linear term is finite and its value compares well with numerical simulations of interacting electrons in the lowest Landau level. Received: 19 February 1998 / Revised: 25 March 1998 / Accepted: 17 April 1998  相似文献   

2.
Employing a near exact Hylleraas wavefunction we calculate various third-order nonlinear optical properties for the helium atom within the time-dependent Kohn-Sham theory. In our calculations we employ the adiabatic local-density approximation (ALDA) for the exchange and correlation kernels fxc and gxc, and compare the numbers obtained by us with the available accurate theoretical as well as experimental results. Our results demonstrate the accuracy of ALDA for the calculation of nonlinear optical properties of many electron systems. Received: 22 June 1998 / Accepted: 15 October 1998  相似文献   

3.
The Heisenberg spin-S quantum antiferromagnet is studied near the large-spin limit, applying a new continuous unitary transformation which extends the usual Bogoliubov transformation to higher order in the 1/S-expansion of the Hamiltonian. This allows to diagonalize the bosonic Hamiltonian resulting from the Holstein-Primakoff representation beyond the conventional spin-wave approximation. The zero-temperature flow equations derived from the extension of the Bogoliubov transformation to order for the ground-state energy, the spin-wave velocity, and the staggered magnetization are solved exactly and yield results which are in agreement with those obtained by a perturbative treatment of the magnon interactions. Received: 19 March 1998 / Revised: 2 June 1998 / Accepted: 8 June 1998  相似文献   

4.
We discuss interaction effects for the one-dimensional Bose gas with a repulsive delta-function interaction potential. We use the random-phase approximation and a finite local-field correction. Analytical results are given for the local-field correction, the pair-correlation function and the ground-state energy. The groundstate energy is found to be in much better agreement with the exact result than the ground-state energy calculated within the Bogoliubov approximation, where local-field corrections are neglected.  相似文献   

5.
6.
The Feynman-Haken variational path integral theory is, for the first time, generalized to calculate the ground-state energy of an electron coupled simultaneously to a Coulomb potential and to a longitudinal-optical (LO) phonon field in parabolic quantum wires. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter and monotonically stronger as the effective wire radius decreases. We apply our calculations to several semiconductor quantum wires and find that the polaronic correction can be considerably large. Received 16 November 1998  相似文献   

7.
We investigate the critical behavior of three-dimensional random-field Ising systems with both Gauss and bimodal distribution of random fields and additional the three-dimensional diluted Ising antiferromagnet in an external field. These models are expected to be in the same universality class. We use exact ground-state calculations with an integer optimization algorithm and by a finite-size scaling analysis we calculate the critical exponents , , and . While the random-field model with Gauss distribution of random fields and the diluted antiferromagnet appear to be in same universality class, the critical exponents of the random-field model with bimodal distribution of random fields seem to be significantly different. Received: 9 July 1998 / Received in final form: 15 July 1998 / Accepted: 20 July 1998  相似文献   

8.
9.
The tunneling behaviors of the magnetization vector are studied in ferromagnetic systems with trigonal and hexagonal crystal symmetries, respectively. The Euclidean transition amplitudes between the energetically degenerate easy directions are evaluated with the help of the dilute instanton-gas approximation. By using the effective Hamiltonian method, the ground-state tunneling level splittings are clearly shown for each kind of symmetry and are found to depend on the parity of the total spin of the ferromagnetic particle. The effective Hamiltonian method is demonstrated to be equivalent to the dilute instanton-gas approximation. Possible relevance to experiments is discussed. Received: 18 November 1997 / Revised: 18 March 1998 / Accepted: 6 April 1998  相似文献   

10.
Large numbers of ground states of two-dimensional Ising spin glasses with periodic boundary conditions in both directions are calculated for sizes up to 402. A combination of a genetic algorithm and Cluster-Exact Approximation is used. For each quenched realization of the bonds up to 40 independent ground states are obtained. For the infinite system a ground-state energy of e =-1.4015(3) is extrapolated. The ground-state landscape is investigated using a finite-size scaling analysis of the distribution of overlaps. The mean-field picture assuming a complex landscape describes the situation better than the droplet-scaling model, where for the infinite system mainly two ground states exist. Strong evidence is found that the ground states are not organized in an ultrametric fashion in contrast to previous results for three-dimensional spin glasses. Received 12 October 1998  相似文献   

11.
A coherent state representation for the electrons of ordered antiferromagnets is used to derive effective Hamiltonians for the dynamics of holes in such systems. By an appropriate choice of these states, the constraint of forbidden double occupancy can be implemented rigorously. Using these coherent states, one arrives at a path integral representation of the partition function of the systems, from which the effective Hamiltonians can be read off. We apply this method to the t-J model on the square lattice and on the triangular lattice. In the former case, we reproduce the well-known fermion-boson Hamiltonian for a hole in a collinear antiferromagnet. We demonstrate that our method also works for non-collinear antiferromagnets by calculating the spectrum of a hole in the triangular antiferromagnet in the self-consistent Born approximation and by comparing it with numerically exact results. Received: 23 December 1997 / Accepted: 17 March 1998  相似文献   

12.
The ground-state energy of the two-sublattice two-dimensional Hubbard model is calculated in the static-fluctuation approximation with allowance for electron transfer from sites to next-to-nearest neighbor sites. In a specific case, the energy of the one-dimensional Hubbard model is calculated and compared with an exact solution.  相似文献   

13.
《Physics letters. A》1997,229(2):113-116
An analytical treatment for the ground-state energy density of the system of one-dimensional fermions interacting via repulsive δ-function potential is presented. The treatment rests on a direct approximation to the pair distribution function and coupling constant integration. The analytical results, obtained for arbitrary coupling strength values, are in good agreement with those given by the numerical solution of an exact integral equation.  相似文献   

14.
We present a simple model for calculating the fluorescence generated by the multi-photon excitation (MPE) of molecules in solution. The model takes into account internal molecular dynamics such as ground-state depletion due to inter-system crossing (ISC), as well as external molecular dynamics associated with diffusion into and out of an excitation volume confined in 3-dimensions. Internal and external molecular dynamics are combined by using a technique of linearization of a modified diffusion equation which takes into account the possibility of concentration depletion due to photobleaching. In addition, we discuss the phenomenon of pulse saturation which effectively limits the molecular excitation rate constant in the case of short pulsed excitation. Our results are specifically applied in the context of fluorescence autocorrelation functions and single-molecule detection. In the latter case, we discuss some consequences of high-order multi-photon photobleaching. Finally, we include three appendices to rigorously define the temporal and spatial profiles of an arbitrary excitation beam, and also to discuss some properties of an exact evaluation of concentration depletion due to photobleaching. Received: 9 March 1998 / Accepted: 20 April 1998  相似文献   

15.
金晶  唐翌 《中国物理快报》2007,24(9):2501-2504
The diffusion Monte Carlo method is applied to study the ground-state properties of charged bosons in one dimension confined in a harmonic double-well trap. The particles interact repulsively through a Coulombic 1/r potential. Numerical results show that the well separation has significant influence on the ground-state properties of the system. When the interaction of the system is weak, ground-state energy decreases with the increasing well separation and has a minimal value. If the well separation increases continually~ the ground-state energy increases and approaches to a constant gradually. This effect will be abatable in the strong interacting system. In addition, by calculating the density of the systems for different interaction strengths with various well separations, we find that the density increases abnormally when the well separation is large at the centre of the system.  相似文献   

16.
The magnetic properties of the spin liquid state of the antiferromagnetic Heisenberg model on the kagomé lattice are investigated within the self-consistent mean-field theory. The results show that the spin liquid ground-state energy per site is , which is in very good agreement with the best numerical estimates. The spin structure factor and spin susceptibility are also discussed. Received 1 December 1998 and Received in final form 12 April 1999  相似文献   

17.
The diffusion Quantum-Monte-Carlo method of solving the Schr?dinger equation is applied to the vibrational ground state of a polyethylene molecule. The results for the ground state energy show good agreement with normal mode analysis. In addition to stretching, bending and torsional interaction van-der-Waals interaction is applied to a single chain showing a decrease of the energy of 5%. The decrease for a polyethylene system of 5 chains with 10 atoms per molecule at the positions of a unit cell is determined to be 4.8% per molecule. Finally first steps towards simulating excited states were performed. Received: 9 February 1998 / Revised: 2 April 1998 / Accepted: 23 April 1998  相似文献   

18.
The ground-state geometries, energetics and the stability of ( n =1-12) clusters are studied using ab initio molecular dynamics method. Our results indicate that the ground-state geometries of large clusters () are different from those of clusters where a trivalent impurity Al is added to the same monovalent host Na. Other features observed are an early appearance of 3-dimensional structure and a pentagonal growth path from n =6 up to n =11. As expected, the ground-state geometry of is not an icosahedron but can be viewed as a distorted form of one of the low lying geometries of cluster. In the energetically favored structures impurity atom Mg is never located at the center of the cluster. The stability analysis based on the energetics shows (8 valence electrons) to be the most stable. In addition there is a remarkable even-odd pattern observed in the dissociation energy and the second difference in energy which is absent in earlier studies of and clusters. Received: 16 September 1998 / Received in final form: 15 February 1999  相似文献   

19.
We investigate the bending of flexible charged membranes due to the presence of rigid rodlike macroions in the framework of the Debye-Hückel approximation. When the macroions are fixed in space at some distance from the bilayer the membrane bends towards them; we calculate the exact deformation profile. On the other hand a macroion which is adsorbed on the membrane causes a deflection of the bilayer. Finally, we consider swollen lamellar polyanion/charged-lipid complexes where the macroions are intercalated between charged lipid bilayers. We predict the occurrence of a double adsorption (pinching effect) of the macroion for sufficiently flexible membranes. Received: 9 February 1998 / Revised: 9 June 1998 / Accepted: 2 July 1998  相似文献   

20.
The ground-state energy of a system of fermions can be calculated by minimizing a linear functional of the two-particle reduced density matrix (2-RDM) if an accurate set of N-representability conditions is applied. In this Letter we introduce a class of linear N-representability conditions based on exact calculations on a reduced active space. Unlike wave-function-based approaches, the 2-RDM methodology allows us to combine information from calculations on different active spaces. By adding active-space constraints, we can iteratively improve our estimate for the ground-state energy. Applying our methodology to a 1D Hubbard model yields a significant improvement over traditional 2-positivity constraints with the same computational scaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号