首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The characterization of metabolites, which are considered markers of bacterial degradation of hydrocarbons, is gaining in importance. Over the years, carboxylic acids have served as useful indicators of aerobic and anaerobic hydrocarbon biodegradation. This interest has been accompanied by the extensive and robust development of analytical methods for monitoring, untargeted identification, and specific and sensitive determination of carboxylic acids in complex matrices. This review discusses critically the state-of-the-art of mass spectrometry as a reliable analytical technique to identify and quantify carboxylic acid metabolites. Attention is paid to sample pre-treatment, selective group pre-concentration, and gas and liquid chromatography preceding mass spectrometry to alleviate matrix effects and ionization discrimination. Recent specific applications of mass spectrometry in monitoring carboxylic acids for assessing hydrocarbon biodegradation are reviewed. Presently, no single technique is sufficient for holistic profiling of carboxylic acids. The direct characterization of carboxylic acids by mass spectrometry is the ultimate goal but despite recent significant developments, challenges persist.  相似文献   

2.
The interactions between asphaltenes and short- to medium-chain n-alkanes were studied using titration microcalorimetry and inverse chromatography. The exothermic heat effects observed upon mixing of asphaltenes and n-alkanes were interpreted in terms of assembling of the two types of compounds into mixed structures. We show that the energy of the interactions between n-alkanes and the asphaltene hydrocarbon chains is close to the energy of the interactions between the asphaltene chains. We propose that the latter interactions are responsible for the formation of the asphaltene aggregates and are the driving force of the aggregate assembly into higher structures.  相似文献   

3.
矿物润滑油是当前最重要的润滑剂之一.但是,矿物润滑油的生物降解性差(研究表明,大部分矿物润滑油的生物降解率不大于40%)[1],由于矿物润滑油渗透、泄漏、溢出和处理不当等原因导致的生态系统污染十分严重,直接制约了矿物润滑油发展.  相似文献   

4.
PLA and PCL nanocomposites prepared by adding 5 wt% of a sepiolite (SEPS9) were degraded in compost, leading to effective degradation for all samples.PLA and PLA/SEPS9 seem to be mainly degraded by a bulk mechanism, showing a significant level of polymer degradation, however the presence of SEPS9 particles partially delays the degradation probably due to a preventing effect of these particles on polymer chain mobility and/or PLA/enzymes miscibility. PCL and PCL/SEPS9 showed a preferential surface mechanism of degradation; and in contrast to PLA, sepiolite does not present a considerable barrier effect on the degradation of PCL.  相似文献   

5.
分析研究了不同粒径分布的石油焦成浆性及制备水焦浆的流变性和稳定性。结果表明,石油焦的成浆性较好,成浆浓度近70%,浆体的表观黏度均随浓度的增大而增大。粒径分布越宽,越有利于堆积,堆积效率越高,可制浆浓度越高,制备水焦浆的最佳药剂量越低,采用萘系分散剂制备的水焦浆呈胀塑性流型,粒径分布越宽,胀塑性越弱,利用静置观察法与Turbiscan Lab稳定性分析仪测定相结合评价水焦浆的稳定性,水焦浆的稳定性差,且粒径越大,析水率越低,沉降区的焦粉颗粒越易发生聚结,底部越易产生硬沉淀,稳定性越差。颗粒聚结是水焦浆稳定性的主要影响因素。  相似文献   

6.
内扩散对煤和石油焦水蒸气气化反应性能的影响   总被引:1,自引:0,他引:1  
以内蒙褐煤、神府烟煤、遵义无烟煤和石油焦为研究对象,借助热重分析仪,进行了水蒸气气化动力学研究,得到了4种样品焦的本征动力学方程,分析了水蒸气分压和粒径对气化反应的影响。基于幂函数模型得到的动力学参数,结合气固催化理论,提出了计算内扩散效率因子(η)的方法。计算效率因子(ηcal)和实验效率因子(ηexp)的对比结果表明,使用该方法得到的内扩散效率因子可以用于定量评估水蒸气气化反应中内扩散过程的影响程度。  相似文献   

7.
Various types of aliphatic polyesters were prepared by both biosynthetic and chemosynthetic methods, and their biodegradation tests were carried out under aerobic conditions in the river water. Biodegradabilities of polyester films were evaluated by monitoring the time-dependent changes in the biochemical oxygen demand (BOD), weight loss (erosion) of polyester film, and dissolved organic carbon concentration (DOC) of test solution. The microbial copolyesters were degraded in the river water at a rapid rate, and the weight-loss- and BOD-biodegradabilities of the majority of biosynthetic polyesters were 100 % and 80±5 % for 28 days, respectively. In contrast, the biodegradabilities of chemosynthetic polyesters were strongly dependent of the chemical structure of monomeric units.  相似文献   

8.
Poly(vinyl alcohol) (PVA) is considered to be one of the very few vinyl polymers soluble in water and susceptible to biodegradation in aqueous media by specific microorganisms, implying oxidation of the carbon backbone followed by a random endocleavage of the polymer chains. The overall process does not appear to be appreciably affected by either degree of polymerization (DPn) or degree of hydrolysis (HD) of PVA at least in the 100-1000 and 80-100% ranges, respectively.In order to assess the effect of HD on the biodegradation propensity of PVA, different PVA samples having similar DPn and noticeably different HD values were synthesized by controlled acetylation of commercial PVA (HD = 99%) and submitted to biodegradation tests in aqueous medium, mature compost and soil by using respirometric procedures. Re-acetylated PVA samples characterized by HD of between 25 and 75% underwent extensive mineralization when buried in solid media, whilst PVA (HD = 99%) showed recalcitrance to biodegradation under those conditions. An opposite trend was indeed observed in aqueous solution, thus suggesting that biodegradation is not an absolute attribute directly related to structural features of the substrate under investigation. Boundary conditions related to the framework under which the biodegradation assessment is undertaken have to be taken into account and specifically well defined.  相似文献   

9.
The effect of humic acids on biodegradation of 2-methyl-4-chlorophenoxyacetic acid in the active sludge medium was studied by analyzing their solutions by chromatography-mass spectrometry. The mechanism of the transformation of the herbicide in the presence of humic acids was examined.  相似文献   

10.
Surface structure change and electrochemical behavior of fluorinated petroleum coke samples (petroleum cokes: petroleum coke and those heat-treated at 1860 °C, 2300 °C and 2800 °C, abbreviated to PC, PC1860, PC2300 and PC2800, respectively) have been investigated. Surface oxygen of petroleum coke was decreased by the fluorination using elemental fluorine. Raman and EPR spectroscopies revealed that surface fluorination increased surface disorder and lattice defects. 19F NMR spectrum suggests that distribution of fluorine atoms in PC fluorinated 300 °C was similar to that in graphite fluoride with covalent CF bonds. Surface areas of fluorinated petroleum cokes were nearly the same as those of non-fluorinated ones or only slightly increased by fluorination, except PC fluorinated at 300 °C. It is noted that first coulombic efficiencies of PC2300 and PC2800 were highly increased to 80-84% by the fluorination at 300 °C. These values of 80-84% were 12-18% higher than those of non-fluorinated PC2300 and PC2800.  相似文献   

11.
单宁聚氨酯土壤微生物降解研究   总被引:2,自引:0,他引:2  
戈进杰  施兴海  吴睿  王珉  李文俊 《化学学报》2001,59(11):2018-2023
采用凝胶渗透色谱仪(GPC)、傅立叶变换红外光谱仪(FT-IR)和电子扫描显微镜(SEM)等实验手段,考察了单宁聚氨酯(WT-PU)在土壤微生物降解前后的化学结构与微观形态的变化,而作为比较用的模型化合物(TMP-PU)在同样的条件下几乎没有变化。结果表明单宁一这交联点在PU整体中以无规降解的方式优先降解,在整个降解过程中,不仅伴随着PU硬段的氢键减弱,软段的氢键也同样有相当的减弱。  相似文献   

12.
The effects of temperature, dissolved oxygen level, and diethyl phthalate (DEP) concentration on the rates of DEP biodegradation have been investigated in shake flask and fermenter experiments, using aerobic and facultatively aerobic microorganisms. The aerobic strain followed Monod growth kinetics, and was negatively affected by temperatures lower than 25 °C and dissolved oxygen levels lower than 0.8 mg/L, whereas the specific DEP-degrading activity of the facultative strain was substrate inhibited under anaerobic conditions, higher at 15°C than 25°C under aerobic conditions, and unaffected by the dissolved oxygen level. Studies were also carried out in soil columns to identify additional factors that might be important for modeling DEP biodegradation.  相似文献   

13.
The effect of montmorillonite clay (MMT) and/or chain extender (CE) on rheological, morphological and biodegradation properties of PLA/PBAT blend was investigated. The biodegradation behavior was evaluated by CO2 evolution in soil burial. CE incorporation resulted in an increase in the complex viscosity of PLA/PBAT blends, an increase in PLA crystallinity and a decrease in the dispersed phase diameter. MMT incorporation resulted in an increase in the complex viscosity, more pronounced shear-thinning behavior and a decrease in the dispersed phase diameter. CE incorporation resulted in a slight effect in the rheological properties of PLA/PBAT blend in the presence of MMT. Unfilled PLA/PBAT blend presented the highest amount of evolved CO2, and the micrographs indicated that degradation tends to occur on the surface. MMT delayed biodegradation of PLA/PBAT blends even although their surfaces presented some cracks and holes in a few localized regions. PLA/PBAT + CE blend presented the lowest amount of evolved CO2.  相似文献   

14.
Bone tissue engineering is an efficient approach to regenerating bone-related defects. The optimal scaffold used for bone tissue engineering must possess adequate porosity and suitable mechanical properties. This work described the development of a biodegradable polymeric composite based on polycaprolactone (PCL) and starch that can form a porous structure in situ. The scaffold exhibited the required mechanical properties at the initial stage of implantation by controlling in situ degradation and subsequent pore formation. PCL/starch (SPCL) scaffolds with 100/0, 70/30, and 50/50 ratios were developed. Degradation studies were performed in phosphate buffer saline (PBS) containing α-amylase or lipase at 37 °C for 4 weeks. Fourier-transform infrared spectroscopy was used to analyze chemical bonds and their changes after degradation. Differential scanning calorimetry was applied to determine the crystallinity and recrystallization of samples before and after degradation. Mass loss and starch release were observed during degradation, and the porosity of samples was measured by the ethanol replacement method. Morphology was further determined using scanning electron microscopy. Finally, variations in compressive strength and modulus during degradation and pore formation were also measured. The porosity of samples reached 45% after 1 month of degradation, and mechanical properties were still appropriate for human bone tissue. Reduction in mechanical property after mass loss, starch release and pore formation was controlled by the hydrogen bonding and recrystallization effect of PCL after degradation. Results suggested that SPCL composite had potential to form porous scaffold with adequate mechanical properties in situ and is promising for bone tissue engineering applications.  相似文献   

15.
Thermogravimetry (TG) was used in this study to evaluate thermal and catalytic pyrolysis of Atmospheric Petroleum Residue (ATR) which can be found in the state of Rio Grande do Norte/Brazil, after a process of atmospheric distillation of petroleum. The utilized sample in the process of catalytic pyrolysis was Al-MCM-41, a mesoporous material. The procedures for obtaining the thermogravimetric curves were performed in a thermobalance with heating rates of 5, 10, and 20 °C min−1. From TG, the activation energy was determined using the Flynn–Wall kinetic method, which decreased from 161 kJ mol−1, for the pure ATR, to 71 kJ mol−1, in the presence of the Al-MCM-41, showing the efficiency of the catalyst in the pyrolysis of Atmospheric Petroleum Residue.  相似文献   

16.
Environmental aspects of PAH biodegradation   总被引:8,自引:0,他引:8  
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants, some of which are on the US Environmental Protection Agency priority pollutant list. Consequently, timely clean-up of contaminated sites is important. The lower-mol-wt PAHs are amenable to bioremediation; however, higher-mol-wt PAHs seem to be recalcitrant to microbial degradation. The rates of biodegradation of PAHs are highly variable and are dependent not only on PAH structure, but also on the physicochemical parameters of the site as well as the number and types of microorganisms present. PAHs sorb to organic matter in soils and sediments, and the rate of their desorption strongly influences the rate at which microorganisms can degrade the pollutants. Much of the current PAH research focuses on techniques to enhance the bioavailability and, therefore, the degradation rates of PAHs at polluted sites. Degradation products of PAHs are, however, not necessarily less toxic than the parent compounds. Therefore, toxicity assays need to be incorporated into the procedures used to monitor the effectiveness of PAH bioremediation. In addition, this article highlights areas of PAH research that require further investigation.  相似文献   

17.
Hydrocarbon-based synthetic polymers are versatile and cost-effective materials in packaging and agriculture. Unstabilised polyolefins are known to biodegrade through peroxidation initiated by both abiotic and biotic and mechanisms. Both abiotic and biotic peroxidation can be accelerated and controlled by specially designed antioxidants and this has resulted in their commercial use in packaging, mulching films and baler twines. They are currently being evaluated in controlled release fertilisers.  相似文献   

18.
19.
LDPE films have been exposed to abiotic and biotic environments. The films were UV irradiated for periods of 0, 7, 14, 26 and 42 days before being mixed with water and soil.Degraded LDPE films were examined by infra-red spectroscopy. The carbonyl peak increased with time in the abiotic environment and the oxidative degradation reported in our earlier works was confirmed.In the presence of a biotic atmosphere, however, this peak decreased. At the same time there was an increase in double bonds which was related to weight loss. An explanation of this behavior is presented as a proposed mechanism for the biodegradation of polyethylene.This mechanism is compared, on the one hand, with abiotic photooxidation, Norrish type I and II degradation, and, on the other, with the biotic paraffin degradation. Abiotic, as well as biotic, ester formation mechanisms are also presented.An ESR spectrum confirms the presence of radicals on the polyethylene samples.At the beginning of the degradation the main agents seem to be UV light and/or oxidizing agents. When carbonyl groups have been produced, these are attacked by microorganisms which degrade the shorter segments of polyethylene chains and form carbon dioxide and water as end products.There is a synergistic effect between photooxidative degradation and biodegradation. The biodegradation of polyethylene can be compared with the biodegradation of paraffin.  相似文献   

20.
Dynamic kinetic analyses were performed on different Brazilian petroleum fractions by thermogravimetry. The data were treated by a multiple heating rate methodology. The apparent activation energies for the light and middle fractions within the range of 62–74 kJ mol−1 and for heavy distillation residues were within the range of 80–100 kJ mol−1 at lower conversions and 100–240 kJ mol−1 at higher conversions. The kinetic study can be a criterion for tells apart the main phenomena involved in the thermal behavior of the refinery feedstock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号