首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is motivated by problems arising in oceanic dynamics. Our focus is the Navier–Stokes equations in a three-dimensional domain Ωɛ, whose thickness is of order O(ɛ) as ɛ → 0, having non-trivial topography. The velocity field is subject to the Navier friction boundary conditions on the bottom and top boundaries of Ωɛ, and to the periodicity condition on its sides. Assume that the friction coefficients are of order O3/4) as ɛ → 0. It is shown that if the initial data, respectively, the body force, belongs to a large set of H1ɛ), respectively, L2ɛ), then the strong solution of the Navier–Stokes equations exists for all time. Our proofs rely on the study of the dependence of the Stokes operator on ɛ, and the non-linear estimate in which the contributions of the boundary integrals are non-trivial.  相似文献   

2.
We consider a problem on an ellipsoidal inhomogeneity in an infinitely extended homogeneous isotropic elastic medium. The inhomogeneity differs from the ambient body in the elastic moduli (Poisson’s ratio ν and shear modulus μ) and in that it has intrinsic strains. We use the equivalent inclusion method to write out expressions for the Helmholtz and Gibbs free energy of the inhomogeneity as quadratic forms in the intrinsic strains and strains at infinity. The general expressions for the coefficients of these quadratic forms are written out as three rank four tensors characterizing the contribution to the energy by the plastic strain (ɛ p 2), by the strain at infinity (ɛ 02), and (only for the Gibbs energy) by the cross term ɛ 0 ɛ p .  相似文献   

3.
We consider a mixed boundary-value problem for the Poisson equation in a plane two-level junction Ω ɛ that is the union of a domain Ω0 and a large number 2N of thin rods with thickness of order ɛ = (N −1). Depending on their lengths, the thin rods are divided into two levels. In addition, the rods from each level are ɛ-periodically alternated. Inhomogeneous Neumann boundary conditions are given on the vertical sides of the thin rods of the first level, and homogeneous Dirichlet boundary conditions are given on the vertical sides of the rods of the second level. We investigate the asymptotic behavior of a solution of this problem as ɛ → 0 and prove a convergence theorem and the convergence of the energy integral. __________ Translated from Neliniini Kolyvannya, Vol. 8, No. 2, pp. 241–257, April–June, 2005.  相似文献   

4.
Crack linkup: An experimental analysis   总被引:1,自引:0,他引:1  
TheT ɛ * integral was used to assess stable crack growth and crack linkup in 0.8 mm thick 2024-T3 aluminum tension specimens with multiple site damage (MSD) under monotonic and cyclic loads. TheT ɛ * values were obtained directly from the recorded moiré fringes on the fracture specimens with and without MSD. TheT ɛ * resistance curves of these fracture specimens of different geometries were in excellent agreement with each other. The results suggest thatT ɛ * is a material parameter which can be used to characterize crack growth and linkup in the absence of large overloading.T ɛ * based crack growth and net-section-yield based crack linkup criteria for MSD specimens are proposed. The crack tip opening angle (CTOA) criterion can also be used to correlate crack growth larger than 2 mm.  相似文献   

5.
  We consider the semidiscrete upwind scheme
We prove that if the initial data ū of (1) has small total variation, then the solution u ɛ (t) has uniformly bounded BV norm, independent of t, ɛ. Moreover by studying the equation for a perturbation of (1) we prove the Lipschitz-continuous dependence of u ɛ (t) on the initial data. Using a technique similar to the vanishing-viscosity case, we show that as ɛ→0 the solution u ɛ (t) converges to a weak solution of the corresponding hyperbolic system,
Moreover this weak solution coincides with the trajectory of a Riemann semigroup, which is uniquely determined by the extension of Liu's Riemann solver to general hyperbolic systems. (Accepted September 18, 2002) Published online January 23, 2003 Communicated by A. Bressan  相似文献   

6.
We consider a two-dimensional model for a rotating Bose-Einstein condensate (BEC) in an anharmonic trap. The special shape of the trapping potential, negative in a central hole and positive in an annulus, favors an annular shape for the support of the wave function u. We study the minimizers of the energy in the Thomas-Fermi limit, where a small parameter ɛ tends to 0, for two different regimes of the rotational speed Ω. When Ω is independent of ɛ, we observe that the energy minimizers acquire vorticity beyond a critical Ω, but the vortices are strongly pinned in the central hole where the potential is negative. In this regime, minimizers exhibit no vortices in the annular bulk of the condensate. There is a critical rotational speed Ω=O(|lnɛ|) for which this strong pinning effect breaks down and vortices begin to appear in the annular bulk. We derive an asymptotic formula for the critical Ω, and determine precisely the location of nucleation of the vortices at the critical value. These results are related to very recent experimental and numerical observations on BEC.  相似文献   

7.
The purpose of this work is to examine the stationary motion and stability properties of stationary motion of two degree-of-freedom noisy auto-parametric systems We shall use analytical techniques to extend the existing results to examine such multi-dimensional nonlinear systems with noise, and in particular additive white noise. We obtain an approximation for the top Lyapunov exponent, the exponential growth rate, of the response of the so-called single-mode stationary motion. We show analytically that the top Lyapunov exponent is positive, and for small values of noise intensity ɛ and dissipation ɛ2 the exponent grows in proportion with ɛ2/3.  相似文献   

8.
This paper concerns the existence of a steadily translating finger solution in a Hele-Shaw cell for small but non-zero surface tension (ɛ2). Though there are numerous numerical and formal asymptotic results for this problem, we know of no mathematically rigorous results that address the selection problem. We rigorously conclude that for relative finger width λ in the range , with small, analytic symmetric finger solutions exist in the asymptotic limit of surface tension if and only if the Stokes constant for a relatively simple nonlinear differential equation is zero. This Stokes constant S depends on the parameter and earlier calculations by a number of authors have shown it to be zero for a discrete set of values of a. The methodology consists of proving the existence and uniqueness of analytic solutions for a weak half-strip problem for any λ in a compact subset of (0, 1). The weak problem is shown to be equivalent to the original finger problem in the function space considered, provided we invoke a symmetry condition. Next, we consider the behavior of the solution in a neighborhood of an appropriate complex turning point for the restricted case , for some . This turning point accounts for exponentially small terms in ɛ, as ɛ→0+ that generally violate the symmetry condition. We prove that the symmetry condition is satisfied for small ɛ when the parameter a is constrained appropriately. (Accepted July 4, 2002 Published online January 15, 2003) Communicated by F. OTTO  相似文献   

9.
A specially constructed hot-wire probe was used to obtain very near-wall velocity measurements in both a fully developed turbulent channel flow and flat plate boundary layer flow. The near-wall hot-wire probe, having been calibrated in a specially constructed laminar flow calibration rig, was used to measure the mean streamwise velocity profile, distributions of streamwise and spanwise intensities of turbulence and turbulence kinetic energy k in the viscous sublayer and beyond; these distributions compare very favorably with available DNS results obtained for channel flow. While low Reynolds number effects were clearly evident for the channel flow, these effects are much less distinct for the boundary layer flow. By assuming the dissipating range of eddy sizes to be statistically isotropic and the validity of Taylor's hypothesis, the dissipation rate ɛ iso in the very near-wall viscous sublayer region and beyond was determined for both the channel and boundary layer flows. It was found that if the convective velocity U c in Taylor's hypothesis was assumed to be equal to the mean velocity  at the point of measurement, the value of (ɛ+ iso)1 thus obtained agrees well with that of (ɛ +)DNS for y + ≥ 80 for channel flow; this suggests the validity of assuming U c= and local isotropy for large values of y +. However, if U c was assumed to be 10.6u τ , the value of (ɛ+ iso)2 thus obtained was found to compare reasonably well with the distribution of (ɛ+ iso)DNS for y +≤ 15. Received: 31 May 1999/Accepted: 20 December 1999  相似文献   

10.
The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate ɛτ) equations were considered. The emphasis of this paper is focused on the effects of the ɛτ-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate of change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters, given by /ɛ, ττ, , Sk/ɛ and G/ɛ, becoming constant. Here, and τ are the production of turbulent kinetic energy k and temperature variance , respectively, ɛ and ɛτ are their respective dissipation rates, R is the mixed time scale ratio, G is the buoyant production of k and S is the mean shear gradient. Calculations show that the ɛτ-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular ɛτ-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the ɛ-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence. Received 21 April 2000 and accepted 21 February 2001  相似文献   

11.
In this paper the dual reciprocity boundary element method is employed to solve nonlinear differential equation ∇2 u+u+ɛu 3 =b. Results obtained in an example have a good agreement with those by FEM and show the applicability and simplicity of dual reciprocity method(DRM)in solving nonlinear differential equations.  相似文献   

12.
Natural convection in a fluid saturated porous medium has been numerically investigated using a generalized non-Darcy approach. The governing equations are solved by using Finite Volume approach. First order upwind scheme is employed for convective formulation and SIMPLE algorithm for pressure velocity coupling. Numerical results are presented to study the influence of parameters such as Rayleigh number (106 ≤Ra ≤108), Darcy number (10−5Da ≤ 10−2), porosity (0.4 ≤ ɛ ≤ 0.9) and Prandtl number (0.01 ≤ Pr ≤ 10) on the flow behavior and heat transfer. By combining the method of matched asymptotic expansions with computational fluid dynamics (CFD), so called asymptotic computational fluid dynamics (ACFD) technique has been employed to generate correlation for average Nusselt number. The technique is found to be an attractive option for generating correlation and also in the analysis of natural convection in porous medium over a fairly wide range of parameters with fewer simulations for numerical solutions.  相似文献   

13.
We solve the initial-boundary-value linear stability problem for small localised disturbances in a homogeneous elastic waveguide formally by applying a combined Laplace – Fourier transform. An asymptotic evaluation of the solution, expressed as an inverse Laplace – Fourier integral, is carried out by means of the mathematical formalism of absolute and convective instabilities. Wave packets, triggered by perturbations localised in space and finite in time, as well as responses to sources localised in space, with the time dependence satisfying eiωt + O(e−ɛt ), for t → ∞, where Im ω0 = 0 and ω > 0 , that is, the signaling problem, are treated. For this purpose, we analyse the dispersion relation of the problem analytically, and by solving numerically the eigenvalue stability problem. It is shown that due to double roots in a wavenumber k of the dispersion relation function D(k, ω), for real frequencies ω, that satisfy a collision criterion, wave packets with an algebraic temporal decay and signaling with an algebraic temporal growth, that is, temporal resonances, are present in a neutrally stable homogeneous waveguide. Moreover, for any admissible combination of the physical parameters, a homogeneous waveguide possesses a countable set of temporally resonant frequencies. Consequences of these results for modelling in seismology are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
This paper is concerned with the freezing of water saturated in aluminum wool mats (AWM) around a cooling pipe. Two arrangements of AWM around the pipe are considered, i.e. a disk-type and a roll-type. Freezing mass M(kg/m2) in the disk type for a porosity ɛ = 0.95, indicates to be two times larger compared with that without AWM (i.e. ɛ = 1) at the freezing time t = 180 min. Even a small AWM volume fraction enhances considerably freezing of water in the disk type. However, freezing enhancement in the roll type is small compared with that of the disk type. Numerical calculation predicts well freezing at the disk type arrangement by using an anisotropy model for the effective thermal conductivity of ice/water saturated AWM, however, poor predictions for the roll type arrangement.  相似文献   

15.
 The mixing length theory is employed to simulate the fully developed turbulent heat transfer in annular-sector ducts with five apex angles (θ0=18,20,24,30,40) and four radius ratios (R o/R i=2,3,4,5). The Reynolds number range is 104105. The numerical results agree well with an available correlation which was obtained in following parameter range: θ0=18,20,24,30,40, R o/R i=4 and Re=1045×104. The present work demonstrates that the application range of the correlation can be much extended. Apart from the mixing length theory, the kɛ model with wall function and the Reynolds stress model are also employed. None of the friction factor results predicted by the three models agrees well with the test data. For the heat transfer prediction the mixing length theory seems the best for the cases studied. Received on 17 July 2000 / Published online: 29 November 2001  相似文献   

16.
Non-Darcy mixed convection in a porous medium from horizontal surfaces with variable surface heat flux of the power-law distribution is analyzed. The entire mixed convection regime is divided into two regions. The first region covers the forced convection dominated regime where the dimensionless parameter ζ f =Ra* x /Pe2 x is found to characterize the effect of buoyancy forces on the forced convection with K U /ν characterizing the effect of inertia resistance. The second region covers the natural convection dominated regime where the dimensionless parameter ζ n =Pe x /Ra*1/2 x is found to characterize the effect of the forced flow on the natural convection, with (K U /ν)Ra*1/2 x /Pe x characterizing the effect of inertia resistance. To obtain the solution that covers the entire mixed convection regime the solution of the first regime is carried out for ζ f =0, the pure forced convection limit, to ζ f =1 and the solution of the second is carried out for ζ n =0, the pure natural convection limit, to ζ n =1. The two solutions meet and match at ζ f n =1, and R * h =G * h . Also a non-Darcy model was used to analyze mixed convection in a porous medium from horizontal surfaces with variable wall temperature of the power-law form. The entire mixed convection regime is divided into two regions. The first region covers the forced convection dominated regime where the dimensionless parameter ξ f =Ra x /Pe x 3/2 is found to measure the buoyancy effects on mixed convection with Da x Pe x /ɛ as the wall effects. The second region covers the natural convection dominated region where ξ n =Pe x /Ra x 2/3 is found to measure the force effects on mixed convection with Da x Ra x 2/3/ɛ as the wall effects. Numerical results for different inertia, wall, variable surface heat flux and variable wall temperature exponents are presented. Received on 8 July 1996  相似文献   

17.
Rheo-dielectric behavior was examined for 4−4n-octyl-cyanobiphenyl (8CB) having large dipoles parallel to its principal axis (in the direction of the C≡N bond). In the quiescent state at all temperatures (T) examined, orientational fluctuation of the 8CB molecules was observed as dielectric dispersions at characteristic frequencies ωc>106 s−1. In the isotropic state at high T, no detectable changes of the complex dielectric constant ɛ*(ω) were found under slow flow at shear rates ˙γ≫ωc. In the nematic state at intermediate T, the terminal relaxation intensity of ɛ*(ω) was decreased under such slow flow. In the smectic state at lower T, the flow effect became much less significant. These results were related to the flow-induced changes of the liquid crystalline textures in the nematic and smectic states, and the differences of the rheo-dielectric behavior in these states are discussed in relation to a difference of the symmetry of molecular arrangements in the nematic and smectic textures. Received: 1 October 1998 Accepted: 13 January 1999  相似文献   

18.
Summary In this paper we look for T-periodic solutions of dynamical systems. Particularly we consider the system whereU ɛC 1(ℝ n x x ℝ, ℝ),U(x, t + T)=U(x,t) ∀ x n , ∀t ɛ ℝ T>0. We assume that the problem is asymptotically linear with a bounded nonlinearity. Under a resonance assumption, we find a multiplicity of T-periodic solutions for T large enough.
Sommario In questo lavoro si cercano soluzioni periodiche di periodo T assegnato di sistemi dinamici. In particolare si considera un sistema di n equazioni differenziali del secondo ordine del tipo doveU ɛC 1(ℝ n x x ℝ, ℝ),U(x, t + T)=U(x,t) ∀ x n , ∀t ɛ ℝ T>0. Nel caso in cui il problema sia asintoticamente lineare, con termine nonlineare limitato e in condizioni di risonanza, troviamo che esiste tale che per il sistema ha una molteplicità di soluzioni.


Presented at the VII A.I.M.E.T.A. and supported by M.P.I. (40% and 60%).  相似文献   

19.
 Impinging jet combusting flows on granite plates are studied. A mathematical model for calculating heat release in turbulent impinging premixed flames is developed. The combustion including radiative heat transfer and local extinction effects, and flow characteristics are modeled using a finite volume computational approach. Two different eddy viscosity turbulence models, namely the standard k–ɛ and the RNG k–ɛ model with and without radiation (discrete transfer model) are assessed. The heat released predictions are compared with experimental data and the agreement is satisfactory only when both radiative heat transfer and local extinction modeling are taken into account. The results indicate that the main effect of radiation is the decrease of temperature values near the jet stagnation point and along the plate surface. Radiation increases temperature gradients and affects predicted turbulence levels independently of the closure model used. Also, the RNG k–ɛ predicts higher temperatures close the solid plate, with and without radiative heat transfer. Received on 13 November 2000 / Published online: 29 November 2001  相似文献   

20.
We study the Cahn-Hilliard energy E ɛ(u) over the unit square under the constraint of a constant mass m with (ɛ > 0) and without ɛ= 0) interfacial energy. Minimizers of E 0(u) have no preferred pattern and we select patterns via sequences of conditionally critical points of E ɛ(u) converging to minimizers as ɛ tends to zero. Those critical points are not minimizers if the singular limit has no minimal interface. We obtain them by a global bifurcation analysis of the Euler-Lagrange equations for E ɛ(u) where the mass m is the bifurcation parameter. We make use of the symmetry of the unit square, and the elliptic maximum principle, in turn, implies that the location of maxima and minima is fixed for all solutions on global branches. This property is used to guarantee the existence of a singular limit and to verify the Weierstrass-Erdmann corner condition which proves its minimizing property. Accepted January 21, 2000?Published online November 24, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号