首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chiral resolution of native DL-malic acid was achieved by ligand-exchange capillary electrophoresis using copper(II)-L-tartrate as a chiral selector. Factors affecting chiral resolution, migration time, and peak area of malic acid were studied. The running conditions for optimum separation of malic acid were found to be 1 mM copper(II) sulfate-1 mM L-tartrate (pH 5.1) with an effective voltage of -20 kV at 30 degrees C, using direct detection at 280 nm, and resolution (Rs) of racemic malic acid was approximately 4. With this system, D- and L-malic acids in apple juice were analyzed successfully.  相似文献   

2.
Chiral resolution of native DL-lactic acid was performed by capillary electrophoresis using 2-hydroxypropyl-beta-cyclodextrin as a chiral selector. Various factors affecting chiral resolution, migration time, and peak area of lactic acid were studied. The running conditions for optimum separation of lactic acid were found to be 90 mM phosphate buffer (pH 6.0) containing 240 mM 2-hydroxypropyl-beta-cyclodextrin with an effective voltage of -30 kV at 16 degrees C, using direct detection at 200 nm. In order to enhance the sensitivity, sample injection was done under a pressure of 50 mbar for 200 s. On-line sample concentration was accomplished by sample stacking. With this system, D- and L-lactic acids in food products were analyzed successfully.  相似文献   

3.
Aizawa S  Kodama S 《Electrophoresis》2012,33(3):523-527
The mechanism of change in the enantiomer migration order (EMO) of tartarate on ligand exchange CE with Cu(II)- and Ni(II)-D-quinic acid systems was investigated thoroughly by circular dichroism (CD) spectropolarimetry. The (13) C NMR spectra of solutions containing D-quinate (pH 5.0) with Cu(II) or Ni(II) revealed the coordination of carboxylate and hydroxyl groups on D-quinate. The D-quinic acid concentration dependence of the CD spectra at a fixed Cu(II) concentration at pH 5.0 indicates that the 1:1, 1:2 and 1:3 Cu(II)-D-quinate complexes were formed with an increase in the concentration of D-quinic acid. The CD spectral behavior revealed that D-tartarate is selectively coordinated to the 1:1 complex to give the 1:1:1 Cu(II)-D-quinate-D-tartarate ternary complex while L-tartarate is selectively bound to the 1:2 and 1:3 complexes to form the 1:2:1 ternary complex. In the Ni(II)-D-quinic acid system, it became apparent that the 1:2 Ni(II)-D-quinate complex is mainly formed in the wide range of D-quinic acid concentration at pH 5.0 and D-tartarate is selectively coordinated to the 1:2 complex to form the 1:2:1 ternary complex. The change in EMO of tartarate on ligand exchange CE was explainable by the change in coordination selectivity for D- and L-tartarates in the Cu(II)- and Ni(II)-D-quinic acid systems depending on the compositions of the complexes formed in BGE.  相似文献   

4.
A series of aldo-bis-indole derivatives (aldo-BINs) was prepared by aromatic C-alkylation reactions of aldoses and indole in acetic acid solution. Common monosaccharides such as glucose, mannose, galactose, fucose, xylose, rhamnose, ribose, arabinose and N-acetylglucosamine were smoothly derivatized to form the UV absorbing aldo-BINs. The use of a capillary electrophoretic method to separate these novel aldo-BIN derivatives was established. The capillary electrophoresis conditions were set by using borate buffer (100 mM) at high pH (pH 9.0). The limit of determination was assessed to be 25 nM. The enantioseparation of D, L-pairs of aldo-BINs based on chiral ligand-exchange capillary electrophoresis technology was also achieved by using modified hydroxypropyl-β-cyclodextrin as the chiral selector in the presence of borate buffer. This aldose labeling method was applied successfully to the compositional and configurational analysis of saccharides, exemplified by a rapid and efficient method to simultaneously analyze the composition and configuration of saccharides from the medicinal herbs Cordyceps sinensis and Dendrobium huoshanense.  相似文献   

5.
The ratio of citric acid to D ‐isocitric acid can be used to distinguish authentic and adulterated fruit juices. To separate DL ‐isocitric acid enantiomers, we used ligand exchange CE. D ‐Quinic acid was used as a chiral selector ligand and Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) ions were used as the central ions of the chiral selector in the BGE. DL ‐Isocitric acid was found to be enantioseparated with the above metal ions except for Mn(II) ion. The optimum running conditions for the analysis of D ‐ and L ‐isocitric acids along with citric acid, an isomer of isocitric acid, were found to be a BGE (pH 5.0) containing 30% ACN, 20 mM acetic acid, 20 mM NiSO4, and 80 mM D ‐quinic acid. Under these conditions, DL ‐isocitric and citric acids in fruit juices were analyzed successfully.  相似文献   

6.
Ali I  Aboul-Enein HY 《Electrophoresis》2003,24(12-13):2064-2069
The chiral resolution of baclofen was achieved by capillary electrophoresis using a fused-silica capillary (60 cm x 75 microm ID). The background electrolyte (BGE) was phosphate buffer (pH 7.0, 50 mM)-acetonitrile (95:5 v/v) containing 10 mM beta-cyclodextrin. The applied voltage was 15 kV. The values of alpha and R(s) were 1.06 and 1.00, respectively. The electrophoretic conditions were optimized varying the pH and the ionic strength of the BGE, concentrations of beta-cyclodextrin and acetonitrile and the applied voltage.  相似文献   

7.
R Kuhn 《Electrophoresis》1999,20(13):2605-2613
This paper reviews chiral separations of primary amines by capillary electrophoresis and crown ether as chiral selector. Two possible mechanisms of chiral recognition by host-guest complexation are discussed: (i) The substituents of the crown ether act as barriers for the guest compounds, and (ii) lateral electrostatic interactions between host and guest occur. Experimental conditions affecting the separation are discussed in detail. A literature overview of practical applications is presented as well. More than 80 different primary amines were analyzed, whereupon the majority could be resolved using a screening method. It is shown that a synergistic effect on the resolution of chiral amines is observed when the chiral crown ether and cyclodextrins are simultaneously used in the same buffer system. This approach opens interesting perspectives for further method optimization.  相似文献   

8.
The separation of racemic derivatized amino acids (N-acetyl) into their enantiomers was achieved using capillary zone electrophoresis employing vancomycin as a chiral selector. Due to the strong absorption properties of the chiral selector at the low wavelengths used, the partial-filling countercurrent method was adopted in order to improve method sensitivity. In the separation system studied, the chiral selector filled only a part of the capillary and, due to the appropriate selection of the pH, was moving in the opposite direction of the analytes keeping the detector free from absorbing compounds. The effect of several experimental parameters on the enantioresolution of analytes was studied, e.g., vancomycin concentration (0-5 mM), pH of the background electrolyte (pH 4-7), capillary temperature (15-35 degrees C), and the presence of an organic modifier in the run buffer (methanol or ethanol or n-propanol). N-Acetyl glutamic acid, serine, cystine, tyrosine, and proline were all baseline-resolved into their enantiomers and the enantioresolution factor (R(s)) was increased by raising the vancomycin concentration. pH 4 allowed the baseline resolution of the five studied analytes in the presence of 2.5 mM of chiral selector and an increase in pH caused a decrease of R(s).  相似文献   

9.
Chiral resolution of native DL-tartaric acid was achieved by ion-pair capillary electrophoresis (CE) using an aqueous-ethanol background electrolyte with (1R,2R)-(-)-1,2-diaminocyclohexane (R-DACH) as a chiral counterion. Factors affecting chiral resolution and migration time of tartaric acid were studied. By increasing the viscosity of the background electrolyte and the ion-pair formation, using organic solvents with a lower relative dielectric constant, resulted in a longer migration time. The optimum conditions for both high resolution and short migration time of tartaric acid were found to be a mixture of 65% v/v ethanol and 35% v/v aqueous solution containing 30 mM R-DACH and 75 mM phosphoric acid (pH 5.1) with an applied voltage of -30 kV at 25 degrees C, using direct detection at 200 nm. By using this system, the resolution (Rs) of racemic tartaric acid was approximately 1. The electrophoretic patterns of tartaric and malic acids suggest that two carboxyl groups and two hydroxyl groups of tartaric acid are associated with the enantioseparation of tartaric acid by the proposed CE method.  相似文献   

10.
In capillary electrophoresis (CE), separation of enantiomers of a chiral compound can be achieved through the chiral interactions and/or complex formation between the chiral selector and the enantiomeric analytes on leaving their diastereomeric forms with different stability constants and hence different mobilities. A great number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties towards a wide number of racemic compounds. The use of azithromycin (AZM) as a chiral selector has not been reported previously. This work reports the use of AZM as a chiral selector for the enantiomeric separations of five chiral drugs and one amino acid (tryptophan) in CE. The enantioseparation is carried out using polar organic mixtures of acetonitrile (ACN), methanol (MeOH), acetic acid and triethylamine as run buffer. The influences of the chiral selector concentration, ACN/MeOH ratio, applied voltage and capillary temperature on enantioseparation are investigated. The results show that AZM is a viable chiral selector in CE for the enantioseparation of the type of chiral drugs investigated.  相似文献   

11.
A method based on capillary zone electrophoresis is presented for the determination of the purity of commercial dimeric cyanine dyes (TOTO, YOYO, BOBO, all -1 and -3 species, LOLO-1, POPO-1) that are common as fluorescent probes for nucleic acid staining. These dyes are tetracharged cations, and have a strong tendency to interact with negatively charged centres, where they are rapidly adsorbed, especially from aqueous solutions. Thus anionic sites at the capillary wall must be avoided, and aqueous buffers are not suitable. The method introduced here avoids both complications, using non-aqueous N,N-dimethylacetamide as solvent, and suppressing the dissociation of silanol groups at the capillary surface due to selection of acidic separation conditions (20 mmol/l perchloric acid as background electrolyte). The present method enables the determination of the purity of all 10 dyes in less than 15 min. The selectivity of the method allows separation of at least five main and differentiating a number of unresolved minor contaminants as demonstrated in detail for TOTO-3 as an example. Quantitation (with 100% normalisation of the peak areas) of nine lots of this dye results in a purity between 33 and 87%.  相似文献   

12.
Zheng ZX  Wei Y  Lin JM 《Electrophoresis》2005,26(4-5):1007-1012
A ligand-exchange capillary electrophoresis was explored, with L-ornithine as the ligand and copper(II) as the central ion. Its applicability was demonstrated with underivatized and dansyl amino acids, a dipeptide, and drugs with amino alcohol structure. The enantioselectivity was found to be strongly dependent on pH and copper(II)-L-Orn complex concentration. Due to the adsorption of the positively charged species onto the capillary inner walls, the chiral separation selectivity is very high while the efficiency is relatively low. Permanent 1,3-propanediamine-coated capillaries show an improved separation efficiency and theoretical plate numbers increasing from 10(4) to 10(5). Similar phenomena were observed when sodium dodecyl sulfate (SDS) micelles were added to the copper(II) complex solution. The poor separation efficiency of chiral compounds in uncoated capillaries may result from the low rate of the ligand-exchange reactions, and the high enantioselectivity may derive from the complexing process in the adsorbed phase.  相似文献   

13.
Lin X  Zhu C  Hao A 《Electrophoresis》2005,26(20):3890-3896
The resolving ability of 2-O-(2-hydroxybutyl)-beta-CD (HB-beta-CD) with different degrees of substitution (DS = 2.9 and 4.0) as a chiral selector in CZE is reported in this work. Fourteen chiral drugs belonging to different classes of compounds of pharmaceutical interest such as beta-agonists, antifungal agents, ageneric agents, etc., were resolved. The effects of the DS of HB-beta-CD on separations were also investigated. The chiral resolution (R(s)) was strongly influenced by the concentrations of the CD derivative, the BGE, and the pH of the BGE. Under the conditions of 50 mmol/L Tris-phosphate buffer at pH 2.5 containing 5 mmol/L HB-beta-CD, all 14 analytes were separated. The very low concentration necessary to obtain separation was particularly impressive. The DS had a significant effect on the resolution of the chiral drugs and the ionic strength of the separation media; hence, the use of a well-characterized CD derivative is crucial.  相似文献   

14.
Four chiral basic analytes, namely methadone, fluoxetine, venlafaxine, and tramadol, were selected as model compounds for investigating their stereoselective separation with highly sulfated gamma-cyclodextrin (HS gamma-CD) by capillary electrophoresis (CE)-UV and CE-mass spectrometry (MS). At high concentration of chiral selector, the preferentially bonded enantiomer migrated faster in the anodic mode to the detector and high resolutions were obtained for all analytes. In the cathodic mode, at lower highly sulphated cyclodextrin (HS-CD) concentration, basic compounds could be detected, with the weakly bonded enantiomer migrating first (enantiomeric migration order inversion). It was also then possible, at intermediate HS-CD concentration, that only one enantiomer migrated to the detector as cation while the other enantiomer complexed with the CD was negatively charged and presented an opposite mobility. The latter never reached the detector achieving a perfect enantiomeric selectivity. Infinite chiral resolutions were thus achieved by CE-UV as well as by CE-electrospray ionisation (ESI)-MS where concentrations of HS-CD were adapted according to the negative contribution of the nebulization gas pressure of the interface.  相似文献   

15.
The evaluation of a macrocyclic glycopeptide antibiotic, eremomycin, as a chiral selector in capillary electrophoresis (CE) has been performed. The stability of eremomycin in solution and capillary electrolyte, as well as its optical and electrophoretic properties have been discussed. The effect of experimental parameters influencing the enantioseparation of several profens has been studied. Excellent enantioseparation of profens has been achieved and migration order has been validated. Comparison of enantioseparations of profens in CE by using eremomycin-mediated electrolytes and in HPLC with eremomycin immobilized on silica has revealed similar trends for both methods.  相似文献   

16.
The glycopeptide antibiotic balhimycin and its haloanalogue bromobalhimycin were evaluated as chiral selectors for enantioresolution by capillary electrophoresis. In order (i) to eliminate the adsorption of the glycopeptide antibiotics on the capillary wall, (ii) to shorten the separation time and (iii) to improve the detection sensitivity, a combined approach of the dynamic surface coating technique, the co-electroosmotic flow electrophoresis technique and the partial filling technique was employed for the enantioresolution of 16 acidic racemates. The effect of experimental parameters (plug length of the partial filling solution containing the chiral selector, selector concentration and buffer pH) on enantiorecognition was investigated. Furthermore, the enantiorecognition ability imparted by balhimycin, bromobalhimycin and vancomycin were compared. For most tested compounds, the highest enantiorecognition was obtained with balhimycin as chiral selector. Only in the case of the enantioresolution of tiaprofenic acid, vancomycin showed a superior enantiorecognition.  相似文献   

17.
(+)-(18-crown-6)-tetracarboxylic acid (18C6H4) has been known as a highly efficient chiral selector for resolving primary amine enantiomers in capillary electrophoresis (CE). We investigated the chiral separation of gemifloxacin using 18C6H4 in analytical counter-current chromatography (CCC). The separation conditions for CE, including the binding constant, pH, and run buffer constituents, provided a helpful guideline for chiral CCC. A successful separation of gemifloxacin enantiomers could be achieved using a two-phase solvent system composed of 1-butanol-ethyl-acetate-bis(2-hydroxyethyl)aminotris(hydroxymethyl)methane acetate buffer with a small amount of 18C6H4. The hydrophobicity of the solvent system and the 18C6H4 concentration were varied to optimize the chiral separation.  相似文献   

18.
H Matsunaga  J Haginaka 《Electrophoresis》2001,22(16):3382-3388
Separations of basic drug enantiomers have been investigated using glucuronyl glucosyl beta-cyclodextrin (GUG beta-CD) as a chiral selector in the background electrolyte by capillary zone electrophoresis. The effects of GUG beta-CD concentration and running buffer pH on the migration times and resolution of 16 basic drug enantiomers were precisely examined using a linear polyacrylamide-coated capillary. High resolution of 16 basic drug enantiomers was generally attained with a running buffer pH 2.5 or 3.5 containing 10 mM GUG beta-CD. Next, we compared the chiral resolution abilities of GUG beta-CD with those of beta-CD and maltosyl beta-CD (G2 beta-CD). GUG beta-CD showed higher resolution for basic drug enantiomers tested than beta-CD and G2 beta-CD. This could be due to that hydrogen bonding or ionic interactions of uncharged and charged glucuronyl glucosyl groups of GUG beta-CD with an analyte could stabilize the inclusion complex.  相似文献   

19.
Jang J  Cho SI  Chung DS 《Electrophoresis》2001,22(20):4362-4367
In the capillary electrophoretic separation of primary amine enantiomers using (+)-(18-crown-6)-tetracarboxylic acid (18C6H4) as a chiral selector, the presence of run buffer constituents such as tris(hydroxymethyl)aminomethane (Tris) or Na+ competing with analytes for 18C6H4, diminishes the effectiveness of 18C6H4. In order to determine appropriate buffer systems for 18C6H4, various run buffer cationic components including Tris, 1,3-bis[tris(hydroxymethyl)methylamino]propane, bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane, triethanolamine, tetramethylammonium, and Na+ were compared. Quantitative studies of the effects of the competitive constituents were carried out by measuring the electrophoretic mobilities of histidine as a function of the 18C6H4 concentration. We also derived a simple equation to estimate the optimal chiral selector concentration for a maximum mobility difference in the presence of a competitive inhibitor.  相似文献   

20.
A method for the determination of tartaric acid enantiomers using CE with contactless conductivity detection has been developed. Cu(II) as a central metal ion together with l ‐hydroxyproline were used as a chiral selector, the BGE was composed of 7 mM CuCl2, 14 mM trans‐4‐hydroxy‐l ‐proline, and 100 mM ε‐aminocaproic acid; the pH was adjusted to 5 by hydrochloric acid. Separation with a resolution of 1.9 was achieved in 9 min in a polyacrylamide‐coated capillary to suppress the EOF. Various counterions of the BGE were studied, and migration order reversal was achieved when switching from ε‐aminocaproic acid to l ‐histidine. With detection limits of about 20 μM, the method was applied to the analysis of wine and grape samples; only l ‐tartaric acid was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号