首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of the dinuclear complex Co2(-OOCCMe3)2(2-OOCCMe3)2bpy2 (1) with the polymer [Co(OH) n (OOCCMe3)2–n ] x afforded the unsymmetrical dinuclear complex bpyCo2(2-O,2-OOCCMe3)(2-O,O"-OOCCMe3)2(2-OOCCMe3) (2). The reaction of 2,2"-dipyridylamine with [Co(OH) n (OOCCMe3)2–n ] x gave rise to the analogous complex [(C5H4N)2NH]Co2(2-O,2-OOCCMe3)(-OOCCMe3)2(2-OOCCMe3) (3). The reaction of complex 1 with Ni4(3-OH)2(-OOCCMe3)4(OOCCMe3)2(MeCN)2[2-o-C6H4(NH2)(NHPh)]2 (4) produced an isostructural heterometallic analog of complex 2 with composition bpyM2(2-O,2-OOCCMe3)(2-O,O"-OOCCMe3)2(2-OOCCMe3) (5) (M = Co, Ni; Co : Ni = 1 : 1) and the dinuclear heterometallic complex bpy(HOOCCMe3)M(-OH2)(-OOCCMe3)2M(OOCCMe3)2[o-C6H4(NH2)(NHPh)] (6) (M = Co, Ni; Co : Ni = 0.15 : 1.85). Compounds 2 and 5 exhibit ferromagnetic spin-spin exchange interactions.  相似文献   

2.
The reactions of 8-amino-2,4-dimethylquinoline (L) (1) with polynuclear nickel(ii) and cobalt(ii) hydroxotrimethylacetato complexes under anaerobic conditions were studied. The nonanuclear cluster Ni9(4-OH)3(3-OH)3(n-OOCCMe3)12(HOOCCMe3)4 gave the mononuclear complex Ni(2-L)(2-OOCCMe3)2 (2). The tetranuclear complex Ni4(3-OH)2(-OOCCMe3)4(2-OOCCMe3)2(EtOH)6 produced the mononuclear complex Ni(2-L)(2-OOCCMe3)(OOCCMe3)L (3). At room temperature, the cobalt-containing polynuclear trimethylacetates, viz., the polymer [Co(OH) n (OOCCMe3)2–n ] x and the tetranuclear complex Co4(3-OH)2(-OOCCMe3)4(2-OOCCMe3)2(EtOH)6, were transformed into the trinuclear cobalt(ii) complex Co3(3-OH)(-OOCCMe3)4(2-L)2(OOCCMe3) (4). Meanwhile, at 80 °C these compounds generated the binuclear cobalt(iii) complex Co2(22-(HN)C9NMe2)2(-OOCCMe3)(L)(OOCCMe3)3 (5). The structures of the resulting compounds were established by X-ray diffraction analysis. Compounds 24 exhibit the antiferromagnetic spin-spin exchange coupling, whereas compound 5 is diamagnetic.  相似文献   

3.
Oxidation of molybdenum(II) thiopivalate and thiobenzoate in the presence of -picoline or pyridine results in the formation of dinuclear molybdenum(V) complexes of the general formulae [Mo2O2(-O)2(-SO4)L4] with L = -picoline or pyridine and [Mo2O2(-O)(-S)(-SO4)L4] with L = -picoline. As determined by X-ray structure analysis, two complexes with -picoline differ in their bridging cores: In one complex, two Mo atoms are doubly bridged through two oxygen atoms; in the other, one Mo atom is doubly bridged through oxygen and sulfur atoms. However, they both crystallize together. The product is solvated with -picoline and water molecules. Molybdenum atoms exhibit distorted octahedral coordinations. The same complexes were prepared also through direct reactions of [Mo2O3(O2CCH3)4] with thiopivalic and thiobenzoic acid in the presence of -picoline or pyridine. The appearance of the oxo-oxygens and sulfido-sulfur as well as sulfato ligand is explained by the molybdenum-catalyzed oxidation of thiocarboxylates.  相似文献   

4.
Co-thermolysis of the tetranuclear trimethylacetate clusters M4(3-OH)2(OOCCMe3)6(HOEt)6 (M = Co or Ni; the reagent ratio was 1 : 1) in decalin (2 h, 170 °C) afforded the octanuclear heterometallic cluster Co6Ni2(4-O)2(2-OOCCMe3)6(3-OOCCMe3)6, which exhibits ferromagnetic properties at 10—8 K.  相似文献   

5.
Addition of aqueous HCl to Ru5( 3-C=CH2)(-SMe)2(-PPh2)2(CO)10 afforded the structurally characterized carbyne complex Ru5( 3-SMe)( 3-CMe)(-Cl)(-SMe)(-PPh2)2(CO)9, formed by addition of H to the vinylidene ligand; a Cl atom bridges an Ru–Ru bond.  相似文献   

6.
The reactions of the polymeric complex [Co(OH)n(OOCCMe3)2–n ]x (1) with 2-amino-5-methylpyridine (L1) and 2,6-diaminopyridine (L2) under anaerobic conditions at the ratio M : L = 1 : 1 afforded the binuclear complexes Co2(-OOCCMe3)4[-MeC5H3N(NH2)]2 (2) and Co2(-OOCCMe3)4[-C5H3N(NH2)2]2 (3), respectively, with Chinese-lantern-like structures. The reaction of the tetranuclear cobalt(ii) complex Co4(3-OH)2(-OOCCMe3)4(2-OOCCMe3)2(EtOH)6 (4) with 2,6-diaminopyridine under anaerobic conditions at the ratio M : L2 = 2 : 1 gave rise to the antiferromagnetic tetranuclear complex Co4(4-O)[-C5H3N(NH2)2]2(-OOCCMe3)4(2-OOCCMe3)2 (5) with tetradentate-bridging coordination of the oxygen atom. The structures of the compounds synthesized were established by X-ray diffraction analysis.  相似文献   

7.
Transformations of polymeric trimethylacetate complexes [M(OH) n (OOCCMe3)2 – n ] m (M = Ni (I) and Co (II)) and clusters Ni9(4-OH)3(3-OH)3(-O,O-OOCCMe3)(-O,O"-OOCCMe3)7(3-O,O,O"-OOCCMe3)3(4-O,O,O",O"-OOCCMe3)(HOOCCMe3)4(III) and Co6(3-OH)2(-OOCCMe3)10(HOOCCMe3)4(VIII), which are formed from Iand IIupon their recrystallization from nonpolar solvents, were studied. It was shown that the action of N-phenyl-o-phenylenediamine (L) on Ior IIIresults, depending on the solvent, in different tetranuclear clusters with the hydroxo bridges. For example, in benzene, the L2Ni4(3-OH)2(HOOCCMe3)4(-OOCCMe3)6complex (IX) is formed; its L molecules are coordinated in a monodentate way, whereas in acetonitrile, they chelate to give the {[o-C6H4(NH2)(NHPh)]2Ni4(3-OH)2(MeCN)2(OOCCMe3)2(-OOCCMe3)4} compound (X). Heating of Xin the presence of atmospheric oxygen yields IX, the mononuclear bissemiquinonediimine [o-C6H4(NH)(NPh)]2Ni complex (XI), and water. It was noted that the use of aniline in these reactions affords, independent of the nature of the solvent, only one (NH2C6H5)2Ni4(3-OH)2(HOOCCMe3)4(-OOCCMe3)6cluster (VI); in acetonitrile, this cluster is formed as the solvate VI· 2HOOCCMe3(VIa). When treated with ethanol, Iand IIIgive the Ni4(EtOH)6(3-OH)2(2-OOCCMe3)4(OOCCMe3)2cluster (V), which is structurally close to the known cobalt-containing analog IV. Thermolysis of IVin decalin at 170° causes its dimerization, giving the octanuclear Co8(4-O)2( n -OOCCMe3)12complex (VII) with the tetradentate oxo bridges.  相似文献   

8.
A series of novel chiral complexes with ,1and ,2 coordination of organic ligands were prepared by reactions of Os3(CO)11(MeCN) and (-H)Os3(CO)10(-OH) withL--serine ethyl ester and ethanolamine. The diastereomeric cluster complexes with serine ligands were separated by crystallization or chromatography. The structures of the compounds obtained were confirmed by1H NMR and IR spectroscopy, mass-spectrometry, elemental analysis, and X-ray diffraction analysis.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 525–530, March, 1994.  相似文献   

9.
The reactions of polynuclear cobalt(ii) trimethylacetates [Co(OH) n (OOCCMe3)2–n ] x , Co6(3-OH)2(OOCCMe3)10(HOOCCMe3)4, or Co4(3-OH)2(OOCCMe3)6(HOEt)6 with an excess of N-phenyl-o-phenylenediamine (1) in toluene followed by treatment with atmospheric oxygen afforded the diamagnetic complex [Co{2-(NPh)(NH)C6H4}2{1-(NH2)C6H4(NPhH)}]+(Me3CCOO...H...OOCCMe3) (3), whose cation contains the CoIII atom. The reaction of Co4(3-OH)2(OOCCMe3)6(HOEt)6 with a deficient amount of diamine 1 in acetonitrile under an argon atmosphere gave rise to the antiferromagnetic ionic complex [Co{2-(NPh)(NH)C6H4}2MeCN]+[Co2(2,2-OOCCMe3)(2-OOCCMe3)2(2-OOCCMe3)2]·2MeCN (4), whose cation is an isoelectronic analog of the cation in complex 3. The structures of the new compounds were established by X-ray diffraction analysis.  相似文献   

10.
Treatment of Ru3(CO)12 with dpphSe2 (dpph = 1,6-bis(diphenylphosphino)hexane) in refluxing toluene in the presence of Me3NO afforded two new compounds, Ru3(CO)7(-CO)(3-Se)(-dpph) (1) and Ru3(CO)7(3-Se)2(-dpph) (2). A similar reaction of Ru3(CO)12 with dpppeSe2 (dpppe = 1,5-bis(diphenylphosphino)pentane) gave exclusively Ru3(CO)7(3-Se)2(-dpppe) (3). Treatment of Ru3(CO)12 with dpphS2 and dpppeS2 at 110°C in the presence of Me3NO afforded Ru3(CO)7(3-S)2(-dpph) (4) and Ru3(CO)7(3-S)2(-dpppe) (5), respectively. Reactions of Fe3(CO)12 with dpphSe2 and dpppeSe2, under identical conditions, afforded Fe3(CO)7(3-Se)2(-dpph) (6) and Fe3(CO)7(3-Se)2(-dpppe) (7), respectively. Compounds 1–7 were characterized spectroscopically and the molecular structures of compounds 1–4 were determined by single crystal X-ray crystallography. The core of 1 contains an equilateral triangle of ruthenium atoms with one capping selenium, one bridging dpph, one doubly bridging carbonyl and seven terminal carbonyl ligands. Complexes 2–4 have a square-pyramidal structure with two metal and two chalcogenide atoms alternating in the basal plane and the third metal atom at the apex of the pyramid, and belong to the family of well-known nido clusters with seven skeletal electron pairs.  相似文献   

11.
The Os3(-H)2(CO)7(-C6H4){3-Ph2PCH2P(C6H4)Ph} complex, which was isolated from the products of thermolysis of Os3(CO)10(-dppm) (dppm is Ph2PCH2PPh2) in toluene, was characterized by X-ray diffraction analysis. Protonation of the resulting complex with trifluoroacetic acid afforded the cationic complex [Os3(-H)3(CO)7(-C6H4){3-Ph2PCH2P(C6H4)Ph}]+.  相似文献   

12.
The thermal reaction of Ru3(CO)10(-Ph2PCH2PPh2) (1) with enyne PhCH=CHCCPh afforded the trinuclear ruthenium clusters Ru3(CO)6{3-P(Ph)CH2PPh2}{3-C(Ph)=CHCC(Ph)(1,2-C6H4)C(=0)} (2), Ru3(-H)(CO)5{3-P(Ph)CH2PPh2}{3-C(Ph)=CHCC(Ph)(1,2-C6H4)C(—0)} (3), and Ru3(CO)6(-CO){3-P(Ph)CH2PPh2}{3-C(C=CPh2)CH=C(H)Ph} (4) and also two isomers of Ru3(CO)5(-CO)(-Ph2PCH2PPh2){3-C4Ph2(CH=CHPh)2} (5a and 5b). Clusters 2, 3, and 4 were characterized by IR spectroscopy, 1H and 31P NMR spectroscopy, and X-ray diffraction analysis. The reaction of complex 1 with enyne FcCH=CHCCFc gave rise to the Ru3(CO)6{3-P(Ph)CH2PPh2}{3-C(Fc)=CHCC(Fc)(1,2-C6H4)C(=0)} (6) and Ru3(-H)(CO)5{3-P(Ph)CH2PPh2}{3-C(Fc)=CHCC(Fc)(1,2-C6H4)C(—0)} (7) clusters. According to the spectral data, the latter compounds are isostructural to complexes 2 and 3, respectively.  相似文献   

13.
Schemes of redox transformations were proposed for osmium carbonylhydride clusters: trinuclear (-H)Os3(-CR = CHR')(CO)1 0 (R = R' = H, Ph; R = H, R' = Ph), (-H)2Os3(3-L)(CO)9 (L = C = CHPh, CHCPh), tetranuclear CpMnOs3 (-CH = CHPh)(-H)(-CO)(CO)1 1, and trinuclear Os3(3-C = CHPh)(CO)9. Two-electron reduction of the trinuclear clusters results in elimination of the unsaturated ligand with preservation of the metal framework.  相似文献   

14.
The reactions between Ru5( 5-C2PPh2)(gm-PPh2(CO)13 (1) and cyclopentadienes afforded the hexanuclear clusters Ru6( 6-C)( 3-PPh2)2(CO)10(-C5 R 5) [R 5 = H5 (2), H4Me (3), Me5 (4)] which contain an encapsulated carbide and a face-capping 3-CH group, formed by cleavage of CC and CP bonds of the C2PPh2 moiety in1. In the reaction with cyclopentadiene, the unusual ligand C13H12O, formed by combination of C2, CO and two molecules of C5H6 (or one molecule of dicyclopentadien), was characterized in the complex Ru5( 4-PPh) ( 4-C13H12O)(-PPh2(CO)11(-C5H5) (5). In the reaction with pentamethylcyclopentadiene, the vinylidene complex Ru5( 3-CCHPh)( 4-PPh)( 4-PPh) (-PPh2)(CO)9(-C5Me5) (6) was also formed.  相似文献   

15.
The new cubane cluster complex K6[Ta4(4-O)(3-Te)4(CN)12]·KOH·4H2O was prepared from a mixture of TaTe4 and KCN by the high-temperature synthesis followed by crystallization from aqueous solutions. The compound was characterized by cyclic voltammetry, X-ray diffraction analysis, and IR, Raman, and electronic spectroscopy. A comparative study of the clusters [M4(4-O)(3-Te)(CN)12]6– (M = Nb or Ta) containing the 4-O ligands was carried out. These clusters are the first molecular chalcogenide cubane complexes of Group V metals.  相似文献   

16.
The reactions of Re2X4(-dppm)2 (X=Cl or Br; dppm=Ph2PCH2PPh2) with H2S in THF afford the dirhenium (III) complexes Re2(-H)(-SH)X4(-dppm)2, the first examples of the oxidative addition of an S-H unit across an electron-rich metal-metal triple bond. The bromide complex Re2(-H)(-SH)Br4(-dppm)2 (C2H5)2O crystallizes in the space group P21/n witha=16.631(2) Å,b=15.967(3) Å,c=19.904(2) Å, =92.698(7)°,V=5279(2) Å3, andZ=4. The structure which was refined toR=0.053 (R w=0.070) for 4903 data withI>3.0(I), shows the presence of an edge-shared bioctahedral geometry with a very short Re-Re distance of 2.4566(7) Å. While the hydrogen atoms of the -H and -SH ligands were not located in the X-ray structure determination, their presence is confirmed by IR and1H NMR spectroscopy.  相似文献   

17.
The tetranuclear platinum cluster complexes [Pt4(-CO)3(-dppm)3(PPh3)]2+ and [Pt4(-H)(-CO)2(-dppm)3(PPh3)]+ have been prepared by cluster expansion. They have butterfly structures and are fluxional.  相似文献   

18.
Studies on C-C bond formation between simple hydrocarbon species such as CH2, C=CH2, CH=CH2, CH2=CH2, CH2=C=CH2 and CHCH at a diruthenium center suggest that the process is promoted when the dimetal center can readily compensate for the two electrons lost in the formation of the new C-C bond. Thus, whereas -CH2 and ethene combine only under forcing conditions, the combination of -CH2 with allene or ethyne, which have additional -electrons available for coordination, occurs readily at room temperature. Likewise, the availability of uncoordinated -electrons in -C=CH2 allows vinylidene to link rapidly with ethene at room temperature. Alkyne complexes [Ru2(CO)(-RCCR)(-C5H5)2] (R=CF3 or Ph) react only under vigorous conditions with additional alkyne to give [Ru2(CO)(-C4R4) (-C5H5)2], but give these same species at room temperature in the presence of acid, shown to be due to the intermediacy of highly reactive 30-electron -vinyl cations. Thermally, alkyne linking proceedsvia three-alkyne species [Ru2(-C6R6)(-C5H5)2] to a four-alkyne complex [Ru2(-C8R8)(-C5H5)2], containing an unprecedented C8 ligand composed of a C6 ring with a C2 tail. Treatment of [Ru2(CO)(-RCCR)(-C5H5)2] with unsaturated metal fragments gives trimetal complexes such as [Ru3(CO)5(3-CF3CCCF3) (-C5H5)2]. The MeCN derivative of this species undergoes unusual linking processes on reaction with additional alkyne to giveinter alia [Ru3(CO)3(3-CCF3){3-C3(CF3)3}(-C5H5)2], arising from alkyne cleavage, and [Ru3(CO)3{3-C4(CF3)2(CO2Me)2}(-C5H5)2], a closo-pentagonal bipyramidal Ru3C4 cluster.  相似文献   

19.
The compound (n-Bu4N)2[Re4Cl8(-Cl)2(-O)2 · 2THF] has been prepared from (n-Bu4N)2 Re2Cl8 by refluxing it in wet trifluoroacetic acid. It forms brown, block-shaped crystals in space group P , withZ = 2 in a cell of dimensions:a = 11.748(1) Å,b = 16.847(3) Å,c = 16.953(3) Å, = 97.53(1)° = 106.49(1)° = 101.25(1)°V = 3093(1) Å3. There are two independent but practically identical tetranuclear anions, each on a crystallographic inversion center. The short, unbridged Re-Re edges, to which triple bonds are assigned have lengths of 2.280(1) Å and 2.276(1) Å and the longer edges, each with a -Cl and a -O atom have lengths of 2.611(1) Å and 2.615(1) Å, for molecules 1 and 2 respectively. This anion completes a series going from [Re4Cl8(-O)2(-OMe)2]2– through [Re4Cl8(-O)2(-OMe)(-Cl)]2– to the present [Re4Cl8(-O)2(-Cl)2]2–. These metallocyclobutadiynes can be viewed as products of the 2,2-cycloaddition of two Re-Re quadruple bonds, but the mechanistic details of how they arise remain obscure.  相似文献   

20.
Diphenylphosphine oxidatively adds to the ReRe bonds of Re2 X 4(-dppm)2 (X=Cl or Br; dppm=Ph2PCH2PPh2) and Re2Cl4(-dpam)2 (dpam=Ph2AsCH2AsPh2) to afford the dirhenium(III) complexes Re2(-X)(-PPh2)HX 3(-LL)2. The dppm complexes have also been prepared from the reactions of Re2(-O2CCH3)X 4(-dppm)2 with Ph2PH, and a similar strategy has been used to prepare Re2(-Cl)(-PPh2)HCl3(-dmpm)2 (dmpm=Me2PCH2PMe2) from Re2(-O2CCH3)Cl4(dmpm)2. Phenylphosphine likewise reacts with Re2 X 4(-dppm)2 to give Re2(-X)(-PHPh)HX 3(-dppm)2. An X-ray crystal structure determination on Re2(-Cl)(-PPh2)HCl3(-dppm)2 confirms its edge-shared bioctahedral structure. This complex crystallizes in the space group (No. 148) witha=21.699(3) Å, =84.50(4)°,V=10084(5) Å3, andZ=6. The structure was refined toR=0.049 (R w 0.069) for 5770 data withI>3.0(I). The Re-Re distance is 2.5918(7) Å. Oxidation of the bromide complex Re2(-Br)(-PPh2)HBr3(-dppm)2 with NOPF6 produces the unusual dirhenium(III, II) cation [Re2(-H)(-Br)[P(O)Ph2]Br2(NO)(-dppm)2]+ which has been structurally characterized as its perrhenate salt, [Re2(-H)(-Br)[P(O)Ph2]Br2(NO)(-dppm)2]ReO4 · 2CH2Cl2. This complex crystallizes in the space group (No. 2) witha=14.187(7) Å,b=16.419(5) Å,c=16.729(5) Å, =98.76(2)°, =110.11(3)°, =104.66(3)°,V=3414(6) Å3,Z=2. The structure was refined toR=0.040 (R w =0.051) for 5736 data withI>3.0(I). The presence of a phosphorus-bound [P(O)Ph2] ligand, a linear nitrosyl and a bridging hydrido ligand has been confirmed. The Re-Re distance is 2.6273(8) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号