共查询到20条相似文献,搜索用时 12 毫秒
1.
The normal inverse Gaussian (NIG) distribution is a promising alternative for modelling financial data since it is a continuous distribution that allows for skewness and fat tails. There is an increasing number of applications of the NIG distribution to financial problems. Due to the complicated nature of its density, estimation procedures are not simple. In this paper we propose Bayesian estimation for the parameters of the NIG distribution via an MCMC scheme based on the Gibbs sampler. Our approach makes use of the data augmentation provided by the mixture representation of the distribution. We also extend the model to allow for modelling heteroscedastic regression situations. Examples with financial and simulated data are provided. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
Abstract Markov chain Monte Carlo (MCMC) methods are currently enjoying a surge of interest within the statistical community. The goal of this work is to formalize and support two distinct adaptive strategies that typically accelerate the convergence of an MCMC algorithm. One approach is through resampling; the other incorporates adaptive switching of the transition kernel. Support is both by analytic arguments and simulation study. Application is envisioned in low-dimensional but nontrivial problems. Two pathological illustrations are presented. Connections with reparameterization are discussed as well as possible difficulties with infinitely often adaptation. 相似文献
3.
Abstract The so-called “Rao-Blackwellized” estimators proposed by Gelfand and Smith do not always reduce variance in Markov chain Monte Carlo when the dependence in the Markov chain is taken into account. An illustrative example is given, and a theorem characterizing the necessary and sufficient condition for such an estimator to always reduce variance is proved. 相似文献
4.
Hidden Markov models are used as tools for pattern recognition in a number of areas, ranging from speech processing to biological sequence analysis. Profile hidden Markov models represent a class of so-called “left–right” models that have an architecture that is specifically relevant to classification of proteins into structural families based on their amino acid sequences. Standard learning methods for such models employ a variety of heuristics applied to the expectation-maximization implementation of the maximum likelihood estimation procedure in order to find the global maximum of the likelihood function. Here, we compare maximum likelihood estimation to fully Bayesian estimation of parameters for profile hidden Markov models with a small number of parameters. We find that, relative to maximum likelihood methods, Bayesian methods assign higher scores to data sequences that are distantly related to the pattern consensus, show better performance in classifying these sequences correctly, and continue to perform robustly with regard to misspecification of the number of model parameters. Though our study is limited in scope, we expect our results to remain relevant for models with a large number of parameters and other types of left–right hidden Markov models. 相似文献
5.
In this paper, we propose an original approach to the solution of Fredholm equations of the second kind. We interpret the standard Von Neumann expansion of the solution as an expectation with respect to a probability distribution defined on a union of subspaces of variable dimension. Based on this representation, it is possible to use trans-dimensional Markov chain Monte Carlo (MCMC) methods such as Reversible Jump MCMC to approximate the solution numerically. This can be an attractive alternative to standard Sequential Importance Sampling (SIS) methods routinely used in this context. To motivate our approach, we sketch an application to value function estimation for a Markov decision process. Two computational examples are also provided. 相似文献
6.
The Monte Carlo within Metropolis (MCwM) algorithm, interpreted as a perturbed Metropolis–Hastings (MH) algorithm, provides an approach for approximate sampling when the target distribution is intractable. Assuming the unperturbed Markov chain is geometrically ergodic, we show explicit estimates of the difference between the th step distributions of the perturbed MCwM and the unperturbed MH chains. These bounds are based on novel perturbation results for Markov chains which are of interest beyond the MCwM setting. To apply the bounds, we need to control the difference between the transition probabilities of the two chains and to verify stability of the perturbed chain. 相似文献
7.
Abstract The “leapfrog” hybrid Monte Carlo algorithm is a simple and effective MCMC method for fitting Bayesian generalized linear models with canonical link. The algorithm leads to large trajectories over the posterior and a rapidly mixing Markov chain, having superior performance over conventional methods in difficult problems like logistic regression with quasicomplete separation. This method offers a very attractive solution to this common problem, providing a method for identifying datasets that are quasicomplete separated, and for identifying the covariates that are at the root of the problem. The method is also quite successful in fitting generalized linear models in which the link function is extended to include a feedforward neural network. With a large number of hidden units, however, or when the dataset becomes large, the computations required in calculating the gradient in each trajectory can become very demanding. In this case, it is best to mix the algorithm with multivariate random walk Metropolis—Hastings. However, this entails very little additional programming work. 相似文献
8.
In the following article, we investigate a particle filter for approximating Feynman–Kac models with indicator potentials and we use this algorithm within Markov chain Monte Carlo (MCMC) to learn static parameters of the model. Examples of such models include approximate Bayesian computation (ABC) posteriors associated with hidden Markov models (HMMs) or rare-event problems. Such models require the use of advanced particle filter or MCMC algorithms to perform estimation. One of the drawbacks of existing particle filters is that they may “collapse,” in that the algorithm may terminate early, due to the indicator potentials. In this article, using a newly developed special case of the locally adaptive particle filter, we use an algorithm that can deal with this latter problem, while introducing a random cost per-time step. In particular, we show how this algorithm can be used within MCMC, using particle MCMC. It is established that, when not taking into account computational time, when the new MCMC algorithm is applied to a simplified model it has a lower asymptotic variance in comparison to a standard particle MCMC algorithm. Numerical examples are presented for ABC approximations of HMMs. 相似文献
9.
Abstract In this article we discuss the problem of assessing the performance of Markov chain Monte Carlo (MCMC) algorithms on the basis of simulation output. In essence, we extend the original ideas of Gelman and Rubin and, more recently, Brooks and Gelman, to problems where we are able to split the variation inherent within the MCMC simulation output into two distinct groups. We show how such a diagnostic may be useful in assessing the performance of MCMC samplers addressing model choice problems, such as the reversible jump MCMC algorithm. In the model choice context, we show how the reversible jump MCMC simulation output for parameters that retain a coherent interpretation throughout the simulation, can be used to assess convergence. By considering various decompositions of the sampling variance of this parameter, we can assess the performance of our MCMC sampler in terms of its mixing properties both within and between models and we illustrate our approach in both the graphical Gaussian models and normal mixtures context. Finally, we provide an example of the application of our diagnostic to the assessment of the influence of different starting values on MCMC simulation output, thereby illustrating the wider utility of our method beyond the Bayesian model choice and reversible jump MCMC context. 相似文献
10.
A current challenge for many Bayesian analyses is determining when to terminate high-dimensional Markov chain Monte Carlo simulations. To this end, we propose using an automated sequential stopping procedure that terminates the simulation when the computational uncertainty is small relative to the posterior uncertainty. Further, we show this stopping rule is equivalent to stopping when the effective sample size is sufficiently large. Such a stopping rule has previously been shown to work well in settings with posteriors of moderate dimension. In this article, we illustrate its utility in high-dimensional simulations while overcoming some current computational issues. As examples, we consider two complex Bayesian analyses on spatially and temporally correlated datasets. The first involves a dynamic space-time model on weather station data and the second a spatial variable selection model on fMRI brain imaging data. Our results show the sequential stopping rule is easy to implement, provides uncertainty estimates, and performs well in high-dimensional settings. Supplementary materials for this article are available online. 相似文献
11.
In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue problems. We restrict our consideration to real symmetric matrices. Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the structure of both – systematic and probability error are presented. It is shown that the values of both errors can be controlled independently by different algorithmic parameters. The results present how the systematic error depends on the matrix spectrum. The analysis of the probability error is presented. It shows that the close (in some sense) the matrix under consideration is to the stochastic matrix the smaller is this error. Sufficient conditions for constructing robust and interpolation Monte Carlo algorithms are obtained. For stochastic matrices an interpolation Monte Carlo algorithm is constructed. A number of numerical tests for large symmetric dense matrices are performed in order to study experimentally the dependence of the systematic error from the structure of matrix spectrum. We also study how the probability error depends on the balancing of the matrix. 相似文献
12.
The problem of marginal density estimation for a multivariate density function f( x) can be generally stated as a problem of density function estimation for a random vector λ( x) of dimension lower than that of x. In this article, we propose a technique, the so-called continuous Contour Monte Carlo (CCMC) algorithm, for solving this problem. CCMC can be viewed as a continuous version of the contour Monte Carlo (CMC) algorithm recently proposed in the literature. CCMC abandons the use of sample space partitioning and incorporates the techniques of kernel density estimation into its simulations. CCMC is more general than other marginal density estimation algorithms. First, it works for any density functions, even for those having a rugged or unbalanced energy landscape. Second, it works for any transformation λ( x) regardless of the availability of the analytical form of the inverse transformation. In this article, CCMC is applied to estimate the unknown normalizing constant function for a spatial autologistic model, and the estimate is then used in a Bayesian analysis for the spatial autologistic model in place of the true normalizing constant function. Numerical results on the U.S. cancer mortality data indicate that the Bayesian method can produce much more accurate estimates than the MPLE and MCMLE methods for the parameters of the spatial autologistic model. 相似文献
13.
In this paper, we consider a class of stochastic mathematical programs with equilibrium constraints introduced by Birbil et al. (Math Oper Res 31:739–760, 2006). Firstly, by means of a Monte Carlo method, we obtain a nonsmooth discrete approximation of the original problem. Then, we propose a smoothing method together with a penalty technique to get a standard nonlinear programming problem. Some convergence results are established. Moreover, since quasi-Monte Carlo methods are generally faster than Monte Carlo methods, we discuss a quasi-Monte Carlo sampling approach as well. Furthermore, we give an example in economics to illustrate the model and show some numerical results with this example. The first author’s work was supported in part by the Scientific Research Grant-in-Aid from Japan Society for the Promotion of Science and SRF for ROCS, SEM. The second author’s work was supported in part by the United Kingdom Engineering and Physical Sciences Research Council grant. The third author’s work was supported in part by the Scientific Research Grant-in-Aid from Japan Society for the Promotion of Science. 相似文献
14.
Abstract We postulate observations from a Poisson process whose rate parameter modulates between two values determined by an unobserved Markov chain. The theory switches from continuous to discrete time by considering the intervals between observations as a sequence of dependent random variables. A result from hidden Markov models allows us to sample from the posterior distribution of the model parameters given the observed event times using a Gibbs sampler with only two steps per iteration. 相似文献
15.
Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data. 相似文献
16.
We prove explicit, i.e., non-asymptotic, error bounds for Markov Chain Monte Carlo methods, such as the Metropolis algorithm. The problem is to compute the expectation (or integral) of f with respect to a measure π which can be given by a density ? with respect to another measure. A straight simulation of the desired distribution by a random number generator is in general not possible. Thus it is reasonable to use Markov chain sampling with a burn-in. We study such an algorithm and extend the analysis of Lovasz and Simonovits [L. Lovász, M. Simonovits, Random walks in a convex body and an improved volume algorithm, Random Structures Algorithms 4 (4) (1993) 359–412] to obtain an explicit error bound. 相似文献
17.
利用M arkov cha in M on te C arlo技术对可分离的下三角双线性模型进行B ayes分析.由于参数联合后验密度的复杂性,我们导出了所有的条件后验分布,以便利用G ibbs抽样器方法抽取后验密度的样本.特别地,由于从模型的方向向量的后验分布中直接抽样是困难的,我们特别设计了一个M etropolis-H astings算法以解决该难题.我们用仿真的方法验证了所建议方法的有效性,并成功应用于分析实际数据. 相似文献
18.
We propose a multinomial probit (MNP) model that is defined by a factor analysis model with covariates for analyzing unordered categorical data, and discuss its identification. Some useful MNP models are special cases of the proposed model. To obtain maximum likelihood estimates, we use the EM algorithm with its M-step greatly simplified under Conditional Maximization and its E-step made feasible by Monte Carlo simulation. Standard errors are calculated by inverting a Monte Carlo approximation of the information matrix using Louis’s method. The methodology is illustrated with a simulated data. 相似文献
19.
Geyer (J. Roy. Statist. Soc. 56 (1994) 291) proposed Monte Carlo method to approximate the whole likelihood function. His method is limited to choosing a proper reference point. We attempt to improve the method by assigning some prior information to the parameters and using the Gibbs output to evaluate the marginal likelihood and its derivatives through a Monte Carlo approximation. Vague priors are assigned to the parameters as well as the random effects within the Bayesian framework to represent a non-informative setting. Then the maximum likelihood estimates are obtained through the Newton Raphson method. Thus, out method serves as a bridge between Bayesian and classical approaches. The method is illustrated by analyzing the famous salamander mating data by generalized linear mixed models. 相似文献
20.
We introduce a new technique to select the number of components of a mixture model with spatial dependence. The method consists of an estimation of the integrated completed likelihood based on a Laplace’s approximation and a new technique to deal with the normalizing constant intractability of the hidden Potts model. Our proposal is applied to a real satellite image. Supplementary materials are available online. 相似文献
|