首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ionic liquid based microwave-assisted simultaneous extraction and distillation (ILMSED) method has been developed for the effective extraction of carnosic acid (CA), rosmarinic acid (RA) and essential oil (EO) from Rosmarinus officinalis. A series of 1-alkyl-3-methylimidazolium ionic liquids differing in composition of anion and cation were evaluated for extraction yield in this work. The results obtained indicated that the anions and cations of ionic liquids had influences on the extraction of CA and RA, 1.0M 1-octyl-3-methylimidazolium bromide ([C8mim]Br) solution was selected as solvent. In addition, the ILMSED procedures for the three target ingredients were optimized and compared with other conventional extraction techniques. ILMSED gave the best result due to the highest extraction yield within the shortest extraction time for CA and RA. The novel process developed offered advantages in term of yield and selectivity of EO and shorter isolation time (20 min in comparison of 4h of hydrodistillation), and provides a more valuable EO (with high amount of oxygenated compounds). The microstructures and chemical structures of rosemary samples before and after extraction were also investigated. Moreover, the proposed method was validated by the stability, repeatability and recovery experiments. The results indicated that the developed ILMSED method provided a good alternative for the both extraction of non-volatile compounds (CA and RA) and EO from rosemary as well as other herbs.  相似文献   

2.
Zeng H  Wang Y  Kong J  Nie C  Yuan Y 《Talanta》2010,83(2):582-590
An ionic liquid-based microwave-assisted extraction (ILMAE) method has been developed for the effective extraction of rutin from Chinese medicinal plants including Saururus chinensis (Lour.) Bail. (S. chinensis) and Flos Sophorae. A series of 1-butyl-3-methylimidazolium ionic liquids with different anions were investigated. The results indicated that the characteristics of anions have remarkable effects on the extraction efficiency of rutin and among the investigated ionic liquids, 1-butyl-3-methylimidazolium bromide ([bmim]Br) aqueous solution was the best. In addition, the ILMAE procedures for the two kinds of medicinal herbs were also optimized by means of a series of single factor experiments and an L9 (34) orthogonal design. Compared with the optimal ionic liquid-based heating extraction (ILHE), marinated extraction (ILME), ultrasonic-assisted extraction (ILUAE), the optimized approach of ILMAE gained higher extraction efficiency which is 4.879 mg/g in S. chinensis with RSD 1.33% and 171.82 mg/g in Flos Sophorae with RSD 1.47% within the shortest extraction time. Reversed phase high performance liquid chromatography (RP-HPLC) with ultraviolet detection was employed for the analysis of rutin in Chinese medicinal plants. Under the optimum conditions, the average recoveries of rutin from S. chinensis and Flos Sophorae were 101.23% and 99.62% with RSD lower than 3%, respectively. The developed approach is linear at concentrations from 42 to 252 mg L−1 of rutin solution, with the regression coefficient (r) at 0.99917. Moreover, the extraction mechanism of ILMAE and the microstructures and chemical structures of the two researched samples before and after extraction were also investigated. With the help of LC-MS, it was future demonstrated that the two researched herbs do contain active ingredient of rutin and ionic liquids would not influence the structure of rutin.  相似文献   

3.
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid–liquid and gas–liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid–liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents.  相似文献   

4.
Poly(lactic acid) (PLA) was depolymerized by methanol in the presence of a novel catalyst: ionic liquids. It was found that the purification method of the main products in the methanolysis catalyzed by ionic liquids was simpler than that of traditional compounds, such as sulfuric acid. Qualitative analysis indicated that the main product in the methanolysis process was methyl lactate. The influences of experimental parameters, such as the amount of ionic liquids, methanolysis time, reaction temperature, and dosages of methanol on the conversion of PLA, yield of methyl lactate were investigated. Under the optimum conditions, using ionic liquid 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) as catalyst, results showed that the ionic liquid could be reused up to 6 times without apparent decrease in the conversion of PLA and yield of methyl lactate. The kinetics of the reaction was also investigated. The results indicated that the methanolysis of PLA was a first-order kinetic reaction with activation energy of 38.29 kJ/mol. In addition, a possible catalysis mechanism of the methanolysis of PLA was proposed.  相似文献   

5.
Sarah C. Hubbard 《Tetrahedron》2005,61(31):7425-7430
The preparation and investigation of triplet photosensitizers designed to be preferentially soluble in room-temperature ionic liquids are reported. Photosensitizers prepared by covalent attachment of 1-methylimidazole to aryl ketones are soluble in ionic liquids and remain in the ionic liquid layer when the solution is extracted with an organic solvent. The photosensitized isomerization of trans-β-ionol to cis-β-ionol was efficiently carried out in ionic liquid solution with the product ionol being extracted and the sensitizer/ionic liquid mixture being re-used in additional photosensitization reactions. The scope and utility of the sensitizers in sensitizing other reactions are discussed.  相似文献   

6.
谷雨  何华  谭树华  李悦  何佳 《分析化学》2012,40(8):1252-1256
通过研究离子液体四氟硼酸1-丁基-3-甲基咪唑( [Bmim]BF4)-Na2-CO3双水相体系对头孢呋辛酯的萃取性能,建立了萃取环境水样中头孢呋辛酯的双水相法.考察了双水相体系组成及相关条件对萃取率的影响,并对其萃取作用力及萃取机制进行了探索.结果表明,Na2CO3用量为0.8~2.0 9,[Bmim]BF4用量为1~2 mL时,随着二者用量的增加,萃取率有所增加.与[Bmim]C1/Na2CO3双水相体系相比,[Bmim]BF4/Na2CO3双水相体系更适于萃取头孢呋辛酯.热力学参数AG°T<0,AH°r>0,△S°T>0,说明萃取过程的主要推动力为疏水性相互作用.在最佳萃取条件下,用此方法萃取环境水样中的头孢呋辛酯,二次萃取率大于93%,重现性好.整个萃取过程快速、高效且无乳化现象.  相似文献   

7.
After being hydrolyzed into corresponding hydrosoluble carboxylate by 1,1,3,3,-tetramethylguanidine (TMG), camptothecin was extracted via the aqueous two-phase systems composed of ionic liquid 1,1,3,3- tetramethylguanidinium(TMGM) carboxylate and K2CO3, and was regenerated at the final by dilute aqueous hydrochloric acid. Among the ionic liquids, TMGM benzoate showed the best effect, TMGM formate the worst, this results were consistent with the liposolubilities of different carboxylic acid components in the ionic liquids. Through two-step extraction of TMGM benzoate ionic liquid/K2CO3 aqueous two-phase under a favorable condition, camptothecin was obtained in a purity of 98.3% and a total yield of 85.1%, from the crude camptothecin extract with a purity of 14.2%.  相似文献   

8.
An effective method was developed to use an enzyme in ionic liquids; the asymmetric reduction of ketones by Geotrichum candidum in ionic liquids proceeded smoothly with excellent enantioselectivity when the cell was immobilized on water-absorbing polymer containing water, while the reaction without the polymer did not proceed.  相似文献   

9.
利用稳态吸收和荧光光谱以及时间相关单光子计数实验,分别测得近红外花菁分子IR125和HDITCP在不同烷基链长阳离子离子液体中的荧光量子产率和荧光寿命,并通过计算获得了它们各自在相应离子液体中的光异构化速率.发现IR125和HDITCP在不同离子液体中的光异构化速率没有随着离子液体粘度的增大而产生明显变化.与IR125和HDITCP在与离子液体具有相同粘度的甘油水溶液中的光异构化速率对比,发现IR125和HDITCP在离子液体中的光异构化能垒比它们在甘油水溶液中的光异构化能垒增大约2 kJ?mol-1,这表明在高粘度的离子液体中IR125或HDITCP与离子液体之间特殊的相互作用会阻碍它们各自的光异构化过程.  相似文献   

10.
As novel solvents, ionic liquids have many applications in synthesis, catalysis and analytical separation, i.e. extraction and chromatography separation. In this paper, some amines including benzidine, benzylamine, N-ethylaniline and N,N′-dimethylaniline are separated using ionic liquids as additives for the mobile phase in high performance liquid chromatography (HPLC). The effects of the length of alkyl chain or counterions on different ionic liquids and their concentrations on the separation of these analytes are performed. The differences between ionic liquids and tetrabutylammonium bromide (TBA) on the separation of o-, m-, p-phthalic acids are compared and the results show that ionic liquids are ion-pair reagents in essence, although their hydrophobicity and hydrogen bonding also play important roles.  相似文献   

11.
室温离子液体是完全由离子构成的液体,具有几乎没有蒸汽压、溶解度大、溶解范围广、易于回收利用、稳定性好等特点,广泛应用于电化学、有机反应、分离萃取、复合材料等各个领域。近年来已成为各种聚合反应研究的重要课题,且主要集中于自由基聚合反应。作为聚合反应的溶剂,离子液体对聚合反应速率、分子量、聚合物的结构性能都有一定影响。本文根据近几年的文献,归纳分析了离子液体中的常规自由基聚合和活性自由基聚合的反应动力学、反应机理、聚合产物的结构和性能以及离子液体的回收利用等问题。  相似文献   

12.
Room temperature ionic liquids are regarded as “Green solvents” for their nonvolatile and thermally stable properties. They are employed to replace traditional volatile organic solvents in organic synthesis, solvent extraction, and electrochemistry. In this work, a water immiscible room temperature ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate [C4mim][PF6], was used as an alternative solvent for liquid/liquid extraction of copper ions. Metal chelators, including dithizone, 8‐hydroxyquinoline, and 1‐(2‐pyridylazo)‐2‐naphthol, were employed to form neutral metal‐chelate complexes with copper ions so that copper ions were extracted from aqueous solution into [C4mim][PF6]. The parameters that affect the extraction of copper ions with this biphasic system were investigated. The extraction behavior in this novel biphasic system is shown to be consistent with that of traditional solvents. For example, the extraction with this biphasic system is strongly pH dependent. So, the extraction efficiency of coppers ion from an aqueous phase can be manipulated by tailoring the pH value of the extraction system. Hence, the extraction, separation and preconcentraction of copper ions can be accomplished by controlling the pH value of the extraction system. It appears that the use of ionic liquid as an alternate solvent system in liquid/liquid extraction of copper ions is very promising.  相似文献   

13.
Guo L  Lee HK 《Journal of chromatography. A》2011,1218(28):4299-4306
For the first time, an ionic liquid based three-phase liquid-liquid-liquid solvent bar microextraction (IL-LLL-SBME) was developed for the analysis of phenols in seawater samples. The ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]), was used as the intermediary solvent for LLL-SBME, enhancing the extraction efficiency for polar analytes. In the procedure, the analytes were extracted from the aqueous sample into the ionic liquid intermediary and finally, back-extracted into an aqueous acceptor solution in the lumen of the hollow fiber. The porous polypropylene membrane acted as a filter to prevent potential interfering materials from being extracted, and no additional cleanup was required. After extraction, the acceptor solution could be directly injected into a high-performance liquid chromatographic system for analysis. Six phenols, 2-nitrophenol, 4-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol were selected here as model compounds for developing and evaluating the method. The most influential extraction parameters were evaluated, including the ionic liquid, the composition of donor solution and acceptor solution, the extraction time and the extraction temperature, the effect of ionic strength, and the agitation speed. Under the most favorable extraction parameters, the method showed good linearity (from 0.05-50 to 0.5-50 μg/L, depending on the analytes) and repeatability of extractions (RSD below 8.3%, n=5). The proposed method was compared to conventional three-phase LLL-SBME and ionic liquid supported hollow fiber protected three-phase liquid-liquid-liquid microextraction, and showed higher extraction efficiency. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of phenols from environmental water samples.  相似文献   

14.
In the past few years, ionic liquid-based aqueous biphasic systems have become the subject of considerable interest as a promising technique for the extraction and purification of several macro/biomolecules. Aiming at developing guidelines for more benign and efficient extraction processes, phase diagrams for aqueous biphasic systems composed of ionic liquids and inorganic/organic salts are here reported. Several combinations of ionic liquid families (imidazolium, pyridinium, phosphonium, quaternary ammonium and cholinium) and salts [potassium phosphate buffer (KH2PO4/K2HPO4 at pH 7), potassium citrate buffer (C6H5K3O7/C6H8O7 at pH 5, 6, 7 and 8) and potassium carbonate (K2CO3 at pH ∼13)] were evaluated to highlight the influence of the ionic liquid structure (cation core, anion and alkyl chain length), the pH and the salt nature on the formation of aqueous biphasic systems. The binodal curves and respective tie-lines reported for these systems were experimentally determined at (298 ± 1) K. In general, the ability to promote the aqueous biphasic systems formation increases with the pH and alkyl chain length. While the influence of the cation core and anion nature of the ionic liquids on their ability to form aqueous biphasic systems closely correlates with ionic liquids capacity to be hydrated by water, the effect of the different salts depends of the ionic liquid nature and salt valency.  相似文献   

15.
Han J  Wang Y  Yu C  Li C  Yan Y  Liu Y  Wang L 《Analytica chimica acta》2011,(2):138-145
Ionic liquid–salt aqueous two-phase flotation (ILATPF) is a novel, green, non-toxic and sensitive samples pretreatment technique. ILATPF coupled with high-performance liquid chromatography (HPLC) was developed for the analysis of chloramphenicol, which combines ionic liquid aqueous two-phase system (ILATPS) based on imidazolium ionic liquid (1-butyl-3-methylimidazolium chloride, [C4mim]Cl) and inorganic salt (K2HPO4) with solvent sublation. In ILATPF systems, phase behaviors of the ILATPF were studied for different types of ionic liquids and salts. The sublation efficiency of chloramphenicol in [C4mim]Cl–K2HPO4 ILATPF was influenced by the types of salts, concentration of K2HPO4 in aqueous solution, solution pH, nitrogen flow rate, sublation time and the amount of [C4mim]Cl. Under the optimum conditions, the average sublation efficiency is up to 98.5%. The mechanism of ILATPF contains two principal processes. One is the mechanism of IL–salt ILATPS formation, the other is solvent sublation. This method was practical when applied to the analysis of chloramphenicol in lake water, feed water, milk, and honey samples with the linear range of 0.5–500 ng mL−1. The method yielded limit of detection (LOD) of 0.1 ng mL−1 and limit of quantification (LOQ) of 0.3 ng mL−1. The recovery of CAP was 97.1–101.9% from aqueous samples of environmental and food samples by the proposed method. Compared with liquid–liquid extraction, solvent sublation and ionic liquid aqueous two-phase extraction, ILATPF can not only separate and concentrate chloramphenicol with high sublation efficiency, but also efficiently reduce the wastage of IL. This novel technique is much simpler and more environmentally friendly and is suggested to have important applications for the concentration and separation of other small biomolecules.  相似文献   

16.
The ionic liquid-based ultrasonic-assisted extraction (ILUAE) has been successfully applied in extracting four biphenyl cyclooctene lignans from the fruit of Schisandra chinensis Baill. Seventeen different types of ionic liquids with different cations and anions have been investigated. 0.8 M 1-lauryl-3-methylimidazolium bromide ([C12mim]Br) solution was selected as solvent. In addition, the ultrasonic parameters including ultrasonic power, time for ultrasonic treatment and solid–liquid ratio have been optimized by Response Surface Method (RSM). Compared with the conventional solvent extraction, the efficiency of the approach proposed in this work is about 3.5 times as much as that of the conventional solvent extraction method. With the proposed extraction method, the extraction time has been reduced to 30 min, whereas the conventional extraction method requires about 6.0 h. The experimental results presented in this work indicate that the ILUAE is a simple and efficient technique for sample preparation. The proposed method is reproducible.  相似文献   

17.
《Analytical letters》2012,45(3):416-428
Hybrid poly (ionic liquid)-bonded silica was combined with an ionic liquid solution for the extraction, separation, and determination of flavonoids from natural plants by using a multi-phase dispersive extraction (MPDE) method. The hybrid material was synthesized using a facile method. A suitable sorbent was identified based on the adsorption behaviors of flavonoids on different poly (ionic liquid)-bonded silicas. In contrast to traditional matrix solid-phase dispersion (MSPD) method, the target analytes were first extracted by three-phase (sample-solvent-sorbent) dispersive extraction with ionic liquid (1-oxyl-3-methylimidazolium bromide) solutions as the solvent, and then cleaned up after removal from the sample matrix, called MPDE. This process combines the advantages of ionic liquids, ionic liquid-based sorbent, and MPDE. The recovery rates were achieved by MPDE of the flavonoids from Chamaecyparis obtusa: 76.4% for myricetin and 90.3% for amentoflavone. The proposed method may be used to extract and separate other flavonoids or even polyphenolic compounds from complex samples.  相似文献   

18.
A series of novel tetramethylguanidinium ionic liquids and hexaalkylguanidinium ionic liquids have been synthesized based on 1,1,3,3‐tetramethylguanidine. The structures of the ionic liquids were confirmed by 1H NMR spectroscopy and mass spectrometry. A green guanidinium ionic liquid based microwave‐assisted extraction method has been developed with these guanidinium ionic liquids for the effective extraction of Praeruptorin A from Radix peucedani. After extraction, reversed‐phase high‐performance liquid chromatography with UV detection was employed for the analysis of Praeruptorin A. Several significant operating parameters were systematically optimized by single‐factor and L9 (34) orthogonal array experiments. The amount of Praeruptorin A extracted by [1,1,3,3‐tetramethylguanidine]CH2CH(OH)COOH is the highest, reaching 11.05 ± 0.13 mg/g. Guanidinium ionic liquid based microwave‐assisted extraction presents unique advantages in Praeruptorin A extraction compared with guanidinium ionic liquid based maceration extraction, guanidinium ionic liquid based heat reflux extraction and guanidinium ionic liquid based ultrasound‐assisted extraction. The precision, stability, and repeatability of the process were investigated. The mechanisms of guanidinium ionic liquid based microwave‐assisted extraction were researched by scanning electron microscopy and IR spectroscopy. All the results show that guanidinium ionic liquid based microwave‐assisted extraction has a huge potential in the extraction of bioactive compounds from complex samples.  相似文献   

19.
A dispersive liquid–liquid microextraction method using a lighter‐than‐water phosphonium‐based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium‐based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl‐(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter‐than‐water phosphonium‐based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples.  相似文献   

20.
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid–liquid microextraction method was proposed for the extraction and concentration of 17‐α‐estradiol, 17‐β‐estradiol‐benzoate, and quinestrol in environmental water samples by high‐performance liquid chromatography with fluorescence detection. 1‐Hexyl‐3‐methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion‐pairing and salting‐out agent NH4PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1‐hexyl‐3‐methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid–liquid microextraction was widened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号