首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A glucose oxidase (GOD) and ferrocene (Fc) dually functionalized gold nanoprobe was simply prepared for electrochemical immunoassay. By combination with sandwich immunoreaction at a carbon nanotube (CNT)‐based immunosensor and signal tracing of the nanoprobe through the Fc‐mediated GOD‐catalytic reaction, a new electrochemical immunoassay method was successfully developed. Both the multi‐enzyme signal amplification of the nanoprobe and the electron transfer promotion of the CNTs modified on the immunosensor greatly enhanced the signal response. Thus this method showed excellent analytical performance including ultrahigh sensitivity, wide linear range as well as good specificity, reproducibility, stability and reliability for human IgG measurement.  相似文献   

2.
In this work, an ultrasensitive electrochemical microRNA detection strategy was developed based on porous palladium-modified horseradish peroxidase sphere (Pd@HRP) and target-induced assembly of DNAzyme. A highly loaded HRP sphere was prepared by covalent layer-by-layer assembly with CaCO3 as sacrificial template for the first time, and was further modified with porous Pd. Notably, Pd@HRP composite showed a good redox activity of HRP and electrocatalytic activity toward H2O2. The utilization of Pd@HRP as electrochemical signal indicator and enhancer to fabricate biosensor could avoid the need for additional redox mediator and amplify the detection sensitivity. Moreover, target recycling amplification was achieved by Pb2+-induced cleavage of ternary “Y” structure, circumventing the use of labile nuclease. Subsequent DNA concatamer synthesized through rolling circle amplification (RCA) reaction with cleaved hairpin probe as primer, hybridized with plentiful Pd@HRP-DNA probes, which led to the increased loading of redox-active and electrocatalytic Pd@HRP for sensitivity improvement. So the proposed electrochemical biosensor detected miRNA-24 down to 0.2 fM (S/N = 3) with a wide linear range from 3 fM to 1 nM. With bifunctional Pd@HRP tag, DNAzyme-aided target recycle and programmable junction probe, this strategy possessed the advantages of high efficiency, high sensitivity, low cost and versatility, and thus held great promise for other low-abundance nucleic acids determination.  相似文献   

3.
Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H2O2. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL−1 to 100 ng mL−1 and a low limit of detection of 0.037 pg mL−1. Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins.  相似文献   

4.
An ultrasensitive multiplexed immunoassay method was developed by using streptavidin/nanogold/carbon nanohorn (SA/Au/CNH) as a novel signal tag to induce silver enhancement for signal amplification. The Au/CNH was prepared by in situ growth of nanogold on carboxylated CNH and functionalized with streptavidin. The SA/Au/CNH showed well dispersibility in physiological buffer and could sever as a common tracing tag to recognize biotinylated signal antibody. The immunosensor array was prepared on disposable screen-printed electrodes. Through sandwich-type immunoreaction and biotin-streptavidin affinity reaction, the SA/Au/CNH tag was captured on the immunoconjugates to induce silver deposition and amplify the electrochemical stripping signals. Using α-fetoprotein and carcinoembryonic antigen as model analytes, the proposed method showed wide linear ranges with the detection limits down to 0.024 pg mL−1 and 0.032 pg mL−1, respectively, and eliminated completely signal cross-talk between adjacent immunosensors. It provided a convenient, high-efficient and ultrasensitive electrochemical detection route for biological analytes, showing great potential in clinical application.  相似文献   

5.
Rapid-response analytical tests that can be performed at the point of sampling are based on a visual detection system. The influence of different factors on the signal generation in a membrane-based enzyme immunoassay was investigated. The research was applied to a flow-through immunoassay for the detection of ochratoxin A (OTA). This assay format is a very convenient, simple and fast qualitative screening tool. Conjugates of OTA with horseradish peroxidase (HRP) and alkaline phosphatase (AP) were used as enzyme tracers. A new conjugate OTA-AP has been synthesized in our laboratory and its performance in the assay was compared with that of OTA-HRP. Different substrate systems for HRP and AP were compared. Several reagents, including polymers and surfactants, were tested for their possible effect on signal generation with the use of OTA-HRP conjugate. Polymers such as poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG) 6000 exerted a favourable effect on signal amplification, whereas surfactants negatively affected assay performance. The highest signal amplification (30–70% compared to the standard assay procedure) was achieved using 0.5% PVA in tetramethylbenzidine (TMB) Colorburst substrate solution and phosphate-buffered saline (PBS) for the washing step. It allowed more reliable visual estimation of the results from OTA-HRP assay. Exclusion of the detergent (Tween 20) from the washing solution exerted a favourable effect on assay performance using both enzyme tracers. The assay using OTA-HRP was more susceptible to matrix interferences than the assay with OTA-AP. Signal development in the matrix was better for the OTA-AP assay and visual estimation of the results was easier to perform in this case. For the analysis of spiked wheat samples, OTA-AP conjugate gave a more sensitive, stable and reproducible assay with a cut-off level of 4 μg kg−1 for OTA. The application of the new OTA-AP conjugate resulted in improved assay performance for the food samples.  相似文献   

6.
Multiplex electrochemical detection of two DNA target sequences in one sample using enzyme-functionalized Au nanoparticles (AuNPs) as catalytic labels for was proposed. This DNA sensor was fabricated using a “sandwich” detection strategy, involving two kinds of capture probes DNA immobilized on glassy carbon electrode (GCE), and hybridization with target DNA sequences, which further hybridized with the reporter DNA loaded on the AuNPs. The AuNP contained two kinds of DNA sequences, one was complementary to the target DNA, while the other was noncomplementary to the target. The noncomplementary sequences were linked with horseradish peroxidase (HRP) and alkaline phosphatase (ALP), respectively. Enhanced detection sensitivity was obtained where the AuNPs carriers increased the amount of enzyme molecules per hybridization. Electrochemical signals were generated from the enzymatic products produced from the substrates catalyzed by HRP and ALP. Under optimal conditions, a 33-mer sequence could be quantified over the ranges from 1.5 × 10−13 to 5.0 × 10−12 M with a detection limit of 1.0 × 10−13 M using HRP-AuNP as labels, and a 33-mer sequence could be quantified over the ranges from 4.5 × 10−11 M to 1.0 × 10−9 M with a detection limit of 1.2 × 10−11 M using ALP-AuNP as labels.  相似文献   

7.
Nanoparticles with desirable properties not exhibited by the bulk material can be readily synthesized because of rapid technological developments in the fields of materials science and nanotechnology. In particular their highly attractive electrochemical properties and electrocatalytic activity have facilitated achievement of the high level of signal amplification needed for the development of ultrasensitive electrochemical affinity biosensors for the detection of proteins and DNA. This review article explains the basic principles of nanoparticle based electrochemical biosensors, highlights the recent advances in the development of nanoparticle based signal amplification strategies, and provides a critical assessment of the likely drawbacks associated with each strategy. Finally, future perspectives for achieving advanced signal simplification in nanoparticles based biosensors are considered.  相似文献   

8.
Yannis Dotsikas 《Talanta》2007,71(2):906-910
In the present study, three luminol signal enhancers {4-methoxyphenol, 4-hydroxybiphenyl and 4-(1H-pyrrol-1-yl)phenol} were utilized in the chemiluminescence (CL) substrate solution of horseradish peroxidase (HRP). The latter was applied in a heterogenous enzyme immunoassay that has been previously described. The employment of these molecules greatly affected important assay parameters, such as detection limit and the range of the calibration curve and the results were compared with those obtained from other two similar enhancers that have been described from our group. Practically, the use of a novel enhancer, even if this is a slightly changed 4-substituted phenol derivative, can affect assay properties so dramatically, one can assume that another substrate/enzyme system was applied. Furthermore, the use of different luminol signal enhancers in the luminol/HRP/H2O2 system affected not only the intensity of the obtained signal, which is well known, but also its kinetics. It was monitored that the stronger intensity was combined with a more rapid decrease of the CL signal.  相似文献   

9.
Due to their high specificity and affinity towards various targets,along with other unique advantages such as stability and low cost,aptamers are widely applied in analytical techniques.A typical aptamerbased electrochemical biosensor is composed of a aptamer as the biological recognition element and transducer conve rting the biologic interaction into electrical signals for the quantitative measure ment of targets.Improvement of the sensitivity of a biosensor is significantly important in order to achieve the detection of biomolecules with low abundance,and different amplification strategies have been explored.The strategies either employ nanomaterials such as gold nanoparticles to construct electrodes which can trans fer the biological reactions more efficiently,or attempt to obtain enha nced signal through multi-labeled carriers or utilize enzyme mimics to catalyze redox cycling.This review discusses recent advances in signal amplification methods and their applications.Critical assessment of each method is also considered.  相似文献   

10.
A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3′-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs–aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1–20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules.  相似文献   

11.
Jiao K  Zhang S  Wei L  Liu C  Zhang C  Zhang Z  Liu J  Wei P 《Talanta》1998,47(5):47-1137
o-Dianisidine (ODA)-H2O2-horseradish peroxidase (HRP) voltammetric enzyme-linked immunoassay system has firstly been used for the detection of tobacco mosaic virus (TMV). HRP catalyzes strongly the oxidation reaction of ODA by H2O2, the product of which produces a sensitive second order derivative linear sweep voltammetric peak at potential of −0.56 V (versus SCE) in Britton–Robinson (BR) buffer. HRP activity has been measured with this voltammetric peak and TMV detected through immunoreaction. The detection limit for HRP is 9.25×10-7 mU l−1 and the linear range is 2.5×10−6–5.0×10−4 mU l−1. The detection limit for the clarified TMV is 0.25 ng ml−1 and the highest dilution ratio detected for the infected leaf sap is 1:8×105. The sensitivity for TMV detection with this method is higher than that with the enzyme-linked immunosorbent spectrophotometric assay (ELISA) using ODA-H2O2-HRP system. The processes of the enzyme-catalyzed reaction and the electro-reduction of the product of the enzyme-catalyzed reaction have been described.  相似文献   

12.
In this work, a new nanomaterial of thiol functional ferrocene derivative (Fc-SH) stabilized Au NPs/carbon dots nanocomposite (Au/C NC) coupling with graphene modified glassy carbon electrode (Fc-S-Au/C NC/graphene/GCE) was fabricated to serve as a quadruplet detection platform for ultrasensitive and simultaneous determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (AC). The Au/C NC was synthesized by adding HAuCl4 into carbon nanodots solution without using any additional reductant and stabilizing agent. Then the Fc-SH was utilized as the protective and capping agent to modify the Au/C NC. Transmission electron microscopy (TEM), UV–Vis, Fourier-transform infrared (FT-IR), scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) were adopted to characterize the morphology and electrochemical properties of the materials and the electrodes. The Fc-S-Au/C NC/graphene/GCE exhibits a synergistic catalytic and amplification effects towards oxidation of AA, DA, UA and AC owing to the existence of the nanomaterial and electron mediator. When simultaneous detection of AA, DA, UA and AC, the oxidation peak potentials of the four compounds on the electrode can be well separated and the peak currents were linearly dependent on their concentrations. The quadruplet detection platform shows excellent linear range and ultrasensitive response to the four components, the detection limits were estimated to be as low as 1.00, 0.05, 0.12 and 0.10 μM (S/N = 3), and the modified electrode exhibits excellent stability and reproducibility. The proposed electrode has been successfully applied to detect of these four analytes in real samples with satisfactory results.  相似文献   

13.
A novel electrochemical immunoassay was developed based on the signal amplification strategy of silver deposition directed by gold nanorods (AuNRs), which was in-situ assembled on the sandwich immunocomplex. The superstructure formed by the self-assembly of AuNRs provided abundant active sites for the nucleation of silver nanoparticles. In this pathway, the stripping current of silver was greatly enhanced. Using human immunoglobulin G (HIgG) as a model analyte, the ultrasensitive immunoassay showed a wide linear range of six orders of magnitude from 0.1 fg mL−1 to 100 pg mL−1, with the low detection limit down to 0.08 fg mL−1. The practicality of this electrochemical immunoassay for detection of HIgG in serum was validated with the average recovery of 93.9%. In addition, this enzyme-free immunoassay also has the advantages of acceptable reproducibility and specificity, and thus this immunosensing protocol can be extended to the detection of other low-abundant protein biomarkers.  相似文献   

14.
Fang L  Chen H  Ying X  Lin JM 《Talanta》2011,84(1):216-222
In this work, a micro-plate chemiluminescence enzyme immunoassay by antibody-coated for the determination of aflatoxin B1 (AFB1) in agricultural products has been established. Aflatoxin B1 antibody (AFB1-Ab) was adsorbed physically on polystyrene micro-plate hole as solid phase antibody, which took place immunity-reaction between antigen and antibody with AFB1 standard solution or samples by direct competition. Luminol-hydrogen peroxide chemiluminescence system catalyzed by horseradish peroxidase (HRP) with p-iodophenol enhancement was used as signal detecting system. The effects of several factors, including composition and pH of coating solution, dilution ratio and amount of antibody and enzyme labeled antigen, time of antibody-coating, incubation and chemiluminescence reaction, and other relevant variables upon the immunoasaay were studied and optimized. The linear range of proposed method for AFB1 was 0.05-10.0 ng g−1 with a correlative coefficient of −0.9997. The sensitivity of the proposed method was 0.01 ng g−1. The RSDs of intra- and inter-assay were less than 12.2% and 10.0%, respectively. This method has been successfully applied to the evaluation of AFB1 in agricultural products with recoveries of 79.8%, 101.9% and 115.4% for low, middle and high concentration samples, respectively. It shows a good correlation with the commercial available ELISA kit for AFB1 with correlative coefficient of 0.9098 indicating that the established CLEIA method can be used to determine AFB1 in real samples.  相似文献   

15.
In this paper, we report an improved electrochemical aptasensor based on exonuclease III and double-stranded DNA (dsDNA)-templated copper nanoparticles (CuNPs) assisted signal amplification. In this sensor, duplex DNA from the hybridization of ligated thrombin-binding aptamer (TBA) subunits and probe DNA can act as an effective template for the formation of CuNPs on the electrode surface, so copper ions released from acid-dissolution of CuNPs may catalyze the oxidation of ο-phenylenediamine to produce an amplified electrochemical response. In the presence of thrombin, a short duplex domain with four complementary base pairs can be stabilized by the binding of TBA subunits with thrombin, in which TBA subunit 2 can be partially digested from 3′ terminal with the cycle of exonuclease III, so the ligation of TBA subunits and the subsequent formation of CuNPs can be inhibited. By electrochemical characterization of dsDNA-templated CuNPs on the electrode surface, our aptasensor can display excellent performances for the detection of thrombin in a broad linear range from 100 fM to 1 nM with a low detection limit of 20.3 fM, which can also specially distinguish thrombin in both PBS and serum samples. Therefore, our aptasensor might have great potential for clinical diagnosis of biomarkers in the future.  相似文献   

16.
A highly sensitive electrochemical method is described for assay of horseradish peroxidase (HRP) using o-tilidine as substrate. Under the optimal conditions, the detection limit for HRP is 2.5 mU/l and the calibration range is from 5.0 to 1000 mU/l. The relative standard deviation of 11 measurements is 6.3% for 10.0 mU/l HRP. This new electrochemical system was further combined with an indirect enzyme immunoassay using direct antigen-coating format for the detection of cucumber mosaic virus (CMV). The results show an improved sensitivity over the traditional o-phenylenediamine (OPD) spectrophotometric enzyme-linked immunosorbent assay (ELISA) method. Using this technique, a minimum detectable level of 2.0 ng/ml of purified CMV and 1:12500 dilution of CMV in infected leaf extractions can be achieved.  相似文献   

17.
A novel class of redox-active molecular tags, poly(o-phenylenediamine)-carried nanogold particles (GPPDs), was first synthesized and functionalized with horseradish peroxidase-anti-prolactin conjugates (HRP-anti-PRL). Thereafter, a specific sandwich-type electrochemical immunoassay was designed for determination of prolactin (PRL) by using GPPD-labeled HRP-anti-PRL conjugates as molecular tags on anti-PRL antibody-modified glassy carbon electrode. Compared with pure gold nanoparticles and poly(o-phenylenediamine) microspheres, the as-prepared GPPDs increased the surface coverage of the nanostructures, and enhanced the immobilization amount of biomolecules. Several labeling protocols compromising GPPD-labeled HRP-anti-PRL, nanogold particles-labeled HRP-anti-PRL and poly(o-phenylenediamine) microspheres-labeled HRP-anti-PRL, were investigated for detection of PRL, and improved analytical features were obtained with the GPPD-based strategy. With the GPPD labeling method, dependence of the electrochemical signals on the incubation time and pH of the assay solution were also studied. The strong attachment of HRP-anti-PRL to the GPPDs resulted in a good repeatability and intermediate reproducibility down to 9.8%. The dynamic concentration range spanned from 0.5 to 180 ng mL−1 PRL with a detection limit of 0.1 ng mL−1 at the 3Sblank level. No significant differences at the 95% confidence level were encountered in the analysis of 10 spiked blank cattle serum samples between the developed immunoassay and enzyme-linked immunosorbent assay method for determination of PRL.  相似文献   

18.
A new, highly sensitive electrochemical immunosensor with a sandwich-type immunoassay format was designed to quantify avian influenza virus H7 (AIV H7) by using silver nanoparticle-graphene (AgNPs-G) as trace labels in clinical immunoassays. The device consists of a gold electrode coated with gold nanoparticle-graphene nanocomposites (AuNPs-G), the gold nanoparticle surface of which can be further modified with H7-monoclonal antibodies (MAbs). The immunoassay was performed with H7-polyclonal antibodies (PAbs) that were attached to the AgNPs-G surface (PAb-AgNPs-G). This method of using PAb-AgNPs-G as detection antibodies shows high signal amplification and exhibits a dynamic working range of 1.6 × 10−3∼16 ng/mL, with a low detection limit of 1.6 pg/mL at a signal-to-noise ratio of 3σ. In summary, we showed that this novel immunosensor is highly specific and sensitive to AIV H7, and the established assay could potentially be applied to rapidly detect other pathogenic microorganisms.  相似文献   

19.
An ultrasensitive electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) has been designed for the detection of clenbuterol. The immunosensor was fabricated by layer by layer and characterized with atomic force microscopic images (AFM) and electrochemical impedance spectra (EIS). In oxygen-saturated pH = 9.0 Tris-HCl buffer, a strong ECL emission of QDs could be observed during the cathodic process due to the H2O2 product from electrochemical reduction of dissolved oxygen. Upon the formation of immunocomplex, the second antibody labeled with horseradish peroxidase was simply immobilized on the electrode surface. The ECL emission decreased since steric hindrance of the immunocomplex slowed down the electron-transfer speed of dissolved oxygen, and also could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant. Using clenbuterol as model analyte, the ECL intensity was determined by the concentration of competitive immunoassay of clenbuterol with a wide calibration in the range of 0.05 ng mL−1 to 1000 ng mL−1, and a low detection limit was 0.02 ng mL−1. The immunosensor shows good stability and fabrication reproducibility. It was applied to detecting practical samples with the satisfactory results. This immunosensing strategy opens a new avenue for detection of residue and application of QDs in ECL biosensing.  相似文献   

20.
《Analytical letters》2012,45(18):1467-1477
Abstract

Effect of temperature was examined on the sensitivity of sandwich enzyme immunoassay for human chorionic gonadotropin (hCC) with anti-hCG Fab'-horseradish peroxidase conjugates prepared by using three different reagents (N-succinimidyl 4-(N-maleimidomethyl) cyclohexane-l-carboxylate, glutaraldehyde and metaperiodate). The non-specific bindings of the conjugates to anti-hCC IgG-coated polystyrene balls were much lower at 20°C than at 37°C, and the specific bindings were slightly higher at 20°C than at 37°C. The lowest non-specific binding and the highest specific binding were obtained by incubation at 20°C with the maleimide conjugate. As a result, the sensitivity could be more easily improved by incubation at 20°C than at 37°C and the highest sensitivity was obtained with the maleimide conjugate. Similar results were also obtained for other macromolecular antigens such as human ferritin and α-fetoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号