首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Competitive electrochemical enzyme-linked immunosorbent assays based on disposable screen-printed electrodes have been developed for quantitative determination of ochratoxin A (OTA). The assays were carried out using monoclonal antibodies in the direct and indirect format. OTA working range, I50 and detection limits were 0.05-2.5 and 0.1-7.5 μg L−1, 0.35 (±0.04) μg L−1 and 0.9 (±0.1) μg L−1, 60 and 100 μg L−1 in the direct and indirect assay format, respectively. The immunosensor in the direct format was selected for the determination of OTA in wheat. Samples were extracted with aqueous acetonitrile and the extract analyzed directly by the assay without clean-up. The I50 in real samples was 0.2 μg L−1 corresponding to 1.6 μg/kg in the wheat sample with a detection limit of 0.4 μg/kg (calculated as blank signal −3σ). Within- and between-assay variability were less than 5 and 10%, respectively. A good correlation (r = 0.9992) was found by comparative analysis of naturally contaminated wheat samples using this assay and an HPLC/immunoaffinity clean-up method based on the AOAC Official Method 2000.03 for the determination of OTA in barley.  相似文献   

2.
In this study, C18-silica monoliths were synthesized as a porous layer in open tubular capillary columns, to be cut later into microcartridges for the analysis of neuropeptides by on-line solid-phase extraction capillary electrophoresis with UV and MS detection (SPE-CE-UV and SPE-CE-MS). First, several types of C18-silica monolithic (MtC18) microcartridges were used to analyse standard solutions of five neuropeptides (i.e. dynorphin A (1–7), substance P (7–11), endomorphin 1, methionine enkephalin and [Ala]-methionine enkephalin). The MtC18 sorbents were especially selective against endomorphin 1 and substance P (7–11)). The best results in terms of sensitivity and inter-microcartridge reproducibility were achieved with the microcartridges obtained from a 10-cm open tubular capillary column with a thin monolithic coating with large through-pores (1–5 μm). Run-to-run repeatability, microcartridge durability, linearity ranges and LODs were studied by MtC18-SPE-CE-MS. As expected due to their greater selectivity, the best LOD enhancement was obtained for End1 and SP (7–11) (50 times with regard to CE-MS). Finally, the suitability of the methodology for analysing biological fluids was tested with plasma samples spiked with End1 and SP (7–11). Results obtained were promising because both neuropeptides could be detected at 0.05 μg mL−1, which was almost the same concentration level as for the standard solutions (0.01 μg mL−1).  相似文献   

3.
This study examines the application of solid-phase microextraction coupled with high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (SPME-HPLC-PIF-FD) for the determination of four phenylurea herbicides (monolinuron, diuron, linuron and neburon) and propanil in groundwater. Direct immersion (DI) SPME was applied using a 60 μm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber for the extraction of the pesticides from groundwater samples. An AQUASIL C18 column (150 mm × 4.6 mm i.d., 5 μm) was used for separation and determination in HPLC. The method was evaluated with respect to the limits of detection (LODs) and the limits of quantification (LOQs) according to IUPAC. The limits of detection varied between 0.019 μg L−1 and 0.034 μg L−1. Limits of quantification ranged between 0.051 μg L−1 and 0.088 μg L−1. These values meet the recommended limits for individual pesticides in groundwater (0.1 μg L−1) established by the EU. Recoveries ranged between 86% and 105% and relative standard deviation values between 2% and 8%.  相似文献   

4.
There is a need for simple and inexpensive methods to quantify potentially harmful persistent pesticides often found in our water-ways and water distribution systems. This paper presents a simple, relatively inexpensive method for the detection of a group of commonly used pesticides (atrazine, simazine and hexazinone) in natural waters using large-volume direct injection high performance liquid chromatography (HPLC) utilizing a monolithic column and a single wavelength ultraviolet-visible light (UV-vis) detector. The best results for this system were obtained with a mobile phase made up of acetonitrile and water in a 30:70 ratio, a flow rate of 2.0 mL min−1, and a detector wavelength of 230 nm. Using this method, we achieved retention times of less than three minutes, and detection limits of 5.7 μg L−1 for atrazine, 4.7 μg L−1 for simazine and 4.0 μg L−1 for hexazinone. The performance of this method was validated with an inter-laboratory trial against a National Association of Testing Authorities (NATA) accredited liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method commonly used in commercial laboratories.  相似文献   

5.
A HPLC method using a coulometric electrode array detector (CEAD) to analyse 4-ethylcatechol in wine was established. The procedure does not require any sample preparation or analyte derivatisation and performs chromatographic separation in a short time. The assay method is linear up to 1520 μg L−1 and precise (R.S.D. < 3%), with limits of detection and quantitation of 1.34 μg L−1 and 2.2 μg L−1, respectively. Recoveries in spiked wine samples ranged from 95% to 104% with a median value of 102% and matrix effects were not observed. The method was applied to the evaluation of the concentration of 4-EC in 250 commercial Italian wines. The red wines analysed had median, 75° percentile and maximum values of 37 μg L−1, 89 μg L−1 and 1610 μg L−1, respectively. For Sangiovese-based wines the mean ratios of 4-EP and 4-EG to 4-EC were 3.7:1 and 0.7:1, respectively. The feasibility of a cheaper fluorimetric approach to 4-EC quantification was investigated.  相似文献   

6.
In this work, the application of a new pulsed amperometric detection (PAD) waveform at a glassy carbon electrode, operating in typical chromatographic mobile phases, is proposed for the sensitive and reproducible determination of arylethanolaminic and phenolic moiety based compounds (e.g. beta-agonists and polyphenols). Preliminary experiments by cyclic voltammetry were carried out to investigate the electrochemical behaviour and to select the detection and cleaning electrode potentials. The proposed potential-time profile was designed to prevent the carbon electrode fouling under repeated analyses, thus ensuring a reproducible and sensitive quantitative determination, without the need of any mechanical or chemical electrode cleaning procedure. The waveform electrochemical parameters, including detection and delay times, were optimized in terms of sensitivity, limit of detection and response stability. The optimized waveform allowed the sensitive and stable detection of model compounds, such as clenbuterol and caffeic acid, that showed detection limits of 0.1 μg L−1 and 14 μg L−1, quantification limits of 0.4 μg L−1 and 46 μg L−1, and linearity up to 100 μg L−1 (r = 0.9993) and 10 mg L−1 (r = 0.9998), respectively. Similar results were obtained for other compounds of the same classes, with precision values under repeatability conditions ranging from 3.0 to 5.9%. The proposed method can be then considered as an excellent alternative to the post-column detection of beta-agonists, phenols and polyphenols.  相似文献   

7.
A novel approach is presented to determine mercury in urine samples, employing vortex-assisted ionic liquid dispersive liquid–liquid microextraction and microvolume back-extraction to prepare samples, and screen-printed electrodes modified with gold nanoparticles for voltammetric analysis. Mercury was extracted directly from non-digested urine samples in a water-immiscible ionic liquid, being back-extracted into an acidic aqueous solution. Subsequently, it was determined using gold nanoparticle-modified screen-printed electrodes. Under optimized microextraction conditions, standard addition calibration was applied to urine samples containing 5, 10 and 15 μg L−1 of mercury. Standard addition calibration curves using standards between 0 and 20 μg L−1 gave a high level of linearity with correlation coefficients ranging from 0.990 to 0.999 (N = 5). The limit of detection was empirical and statistically evaluated, obtaining values that ranged from 0.5 to 1.5 μg L−1, and from 1.1 to 1.3 μg L−1, respectively, which are significantly lower than the threshold level established by the World Health Organization for normal mercury content in urine (i.e., 10–20 μg L−1). A certified reference material (REC-8848/Level II) was analyzed to assess method accuracy finding 87% and 3 μg L−1 as the recovery (trueness) and standard deviation values, respectively. Finally, the method was used to analyze spiked urine samples, obtaining good agreement between spiked and found concentrations (recovery ranged from 97 to 100%).  相似文献   

8.
For the first time, an automatic sample pre-treatment/detection method is proposed for the multiclass determination of UV filters (namely, benzophenone-3, ethylhexylmetoxycinnamate, butylmethoxydibenzoylmethane and homosalate) in environmental samples. The new methodology comprises in-line solid-phase extraction (SPE) of the target analytes by exploiting the bead injection (BI) concept in a mesofluidic lab-on-valve (LOV) format, with subsequent determination by liquid chromatography (LC). The proposed microanalytical system, using a multisyringe burette as propulsion unit, automatically performed the overall SPE steps, including the renewal of the sorbent in each analytical cycle to prevent sample cross-contamination and the post-extraction adjustment of the eluate composition to prevent chromatographic band broadening effects. In order to expedite the LC separation, a C18 monolithic column was applied and an accelerated isocratic elution was carried out by using a cationic surfactant as mobile phase additive. The LOV-BI-LC method was proven reliable for handling and analysis of complex matrices, e.g., spiked swimming pool water and seawater, with limits of detection ranging between 0.45 and 3.2 μg L−1 for 9 mL sample volume. Linear calibration was attained up to 160 μg L−1 for homosalate and up to 35 μg L−1 for the other target analytes, with good reproducibility (RSD < 13%, for 5 different SPE columns). The hyphenated scheme is able to process a given sample simultaneously and within the same time frame than the chromatographic separation/determination of the formerly pre-treated sample, providing concentration values every 9 min. Hence, the sample throughput was enhanced up to 33 times when compared with previously reported off-line SPE methods. A drastic reduction in reagent consumption and effluent production was also attained, contributing to the development of an environment-friendly analyzer.  相似文献   

9.
In this study a novel preparation protocol has been developed for the construction of an in-tube molecularly imprinted polymer-solid phase microextraction (MIP-SPME) device. Open tubular capillaries have been molded from a polymer sorbent imprinted for 4-nitrophenol as target molecule. Different parameters like inner diameter and volume of the polymer, porogen volume, swelling and shrinking effects of the polymer tubes, polymerization time, pH of the sample, extraction time, ‘salting out’ effect and serial connection of the tubes were evaluated and optimized. Particularly, an optimized polymer preparation process and extraction condition enhanced the final extraction recovery of 4-nitrophenol substantially. Using this new MIP-SPME technique with high-performance liquid chromatography-ultraviolet (HPLC-UV) analysis of the extracts, the linear range and the limits of detection and quantification are 0.001–10 mg L−1, 0.33 μg L−1 and 1.1 μg L−1 respectively. At optimized conditions, a mixture of nitrophenols, alkylated and chlorinated phenols spiked into municipal waste water were analyzed to evaluate the matrix effects and cross selectivity of the new MIP capillary tubes.  相似文献   

10.
The common sweeteners aspartame, cyclamate, saccharin and acesulfame K were determined by capillary electrophoresis with contactless conductivity detection. In order to obtain the best compromise between separation efficiency and analysis time hydrodynamic pumping was imposed during the electrophoresis run employing a sequential injection manifold based on a syringe pump. Band broadening was avoided by using capillaries of a narrow 10 μm internal diameter. The analyses were carried out in an aqueous running buffer consisting of 150 mM 2-(cyclohexylamino)ethanesulfonic acid and 400 mM tris(hydroxymethyl)aminomethane at pH 9.1 in order to render all analytes in the fully deprotonated anionic form. The use of surface modification to eliminate or reverse the electroosmotic flow was not necessary due to the superimposed bulk flow. The use of hydrodynamic pumping allowed easy optimization, either for fast separations (80 s) or low detection limits (6.5 μmol L−1, 5.0 μmol L−1, 4.0 μmol L−1 and 3.8 μmol L−1 for aspartame, cyclamate, saccharin and acesulfame K respectively, at a separation time of 190 s). The conditions for fast separations not only led to higher limits of detection but also to a narrower dynamic range. However, the settings can be changed readily between separations if needed. The four compounds were determined successfully in food samples.  相似文献   

11.
A novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AAPTS)-silica monolithic capillary was prepared by sol–gel technology, and used as capillary microextraction (CME) column for aluminum fractionation by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV)–ICP–MS with the use of polytetrafluoroethylene (PTFE) slurry as fluorinating agent. The extraction behaviors of different Al species were studied and it was found that in the pH range of 4–7, labile monomeric Al (free Al3+, Al–OH and Al–F) could be retained quantitatively on the monolithic capillary, while non-labile monomeric Al (Al–Cit and Al–EDTA) passed through the capillary directly. The labile monomeric Al retained on monolithic capillary was eluted with 10 μL 1 mol L− 1 HCl and the elution was introduced into the ETV for fluorination assisted ETV–ICP–MS determination. The total monomeric Al fraction was also determined by AAPTS-silica monolithic CME–fluorination-assisted electrothermal vaporization (FETV)–ICP–MS after the sample solution was adjusted to pH 8.8. Non-labile monomeric Al was obtained by subtracting labile monomeric Al from the total monomeric Al. Under the optimized conditions, the relative standard deviation (R.S.D) was 6.2% (C = 1 μg L− 1, = 7; sample volume, 5 mL), and the limit of detection was 1.6 ng L− 1 for Al with an enrichment factor of 436 fold and a sampling frequency of 9 h− 1. The prepared AAPTS-silica monolithic capillary showed an excellent pH tolerance and solvent stability and could be used for more than 250 times without decreasing adsorption efficiency. The developed method was applied to the fraction of Al in rainwater and fruit juice, and the results demonstrated that the established system had advantages over the existing 8-hydroxyquinoline (8-HQ) chelating system for Al fractionation such as wider pH range, higher tolerance of interference and better regeneration.  相似文献   

12.
A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10−9 m2 V−1 s−1) when compared with unmodified fused silica (5.9 ± 0.1 10−8 m2 V−1 s−1). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use.  相似文献   

13.
We report the fabrication and performance of a silicon‐on‐glass micro gas chromatography eight‐capillary column based on microelectromechanical systems technology that is 50 cm long, 30 μm wide, and 300 μm deep. According to the theory of a gas chromatography column, an even gas flow among different capillaries play a vital role in the peak broadening. Thus, a flow splitter structure is designed by the finite element method through the comparison of the velocity distributions of the eight‐capillary columns with and without splitter as well as an open tubular column. The simulation results reveal that eight‐capillary column with flow splitters can receive more uniform flow velocity in different capillaries, hence decreases the peak broadening and in turn increases the separation efficiency. The separation experiment results show that the separation efficiency of about 22 000 plates/m is achieved with the chip column temperature programmed for analysis of odorous sulfur pollutants. This figure is nearly two times higher than that of the commercial capillary column coated the similar stationary phase. And the separation time of all the components in the microcolumn is less than 3.8 min, which is faster than the commercial capillary column.  相似文献   

14.
Solid-phase extraction (SPE) procedures for cleanup and preconcentration followed by HPLC-UV method were investigated for the simultaneous determination of seven low-dosed pesticides in saline concentrates for hemodialysis. The target compounds were ametryn, desmetryn, prometryn, terbutryn, molinate, triallate and butylate. Polyethylene (three different types), teflon, polyurethane and polystyrene, in powder form, were investigated as adsorbents for solid-phase extraction of the analytes from the saline samples. Quantification was performed at 222 nm and the analytes were separated on a LiChrosorb RP-18 (5 μm, 125 mm × 4 mm i.d.) column using gradient elution with water/acetonitrile as mobile phase. The duration each chromatographic run was 18 min including column reconditioning. The efficiency of the different SPE substrates for retaining the analytes from the highly concentrated saline (HCS) samples was discussed. The best performance was achieved with polystyrene as SPE material considering preconcentration factor, precolumn clogging, reusing capability and similarity between the mobile phases for SPE and HPLC procedures. Analyte concentrations as low as 1 μg L−1 could be determined in spiked HCS samples after preconcentration on polystyrene SPE precolumns. Recoveries between 98.7 and 102.2% were obtained from commercial spiked samples. Detection limits ranging from 4.8 (for prometryn) to 46 μg L−1 (for butylate) were calculated (without preconcentration). The within-day relative standard deviations (n = 9) ranged from 2.3 to 4.8%.  相似文献   

15.
Correia PR  Oliveira PV 《Talanta》2005,67(1):46-53
The effectiveness of internal standardization for simultaneous atomic absorption spectrometry (SIMAAS) was investigated for As and Se determination in urine. Co and Sn were selected as internal standard (IS) candidates based on the evaluation of some physico-chemical parameters related to the atomization. Correlation graphs, plotted from the normalized absorbance signals (n = 20) of internal standard (axis y) versus analyte (axis x), precision, and accuracy of the analytical results were the supportive parameters to choose Co as the most appropriate IS. The urine samples were diluted 1 + 2 to 1.0% (v/v) HNO3 + 80 μg L−1 Co2+. The mixture 20 μg Pd + 3 μg Mg was used as chemical modifier and the optimized temperatures for pyrolysis and atomization steps were 1400 and 2300 °C, respectively. The characteristic masses for As (47 ± 1 pg) and Se (72 ± 2 pg) were estimated from the analytical curves. The detection limits (n = 20, 3δ) were 1.8 ± 0.1 and 2.6 ± 0.1 μg L−1 for As and Se, respectively. The reliability of the entire procedure was checked with the analysis of certified reference material from Sero AS(Seronorm™ Trace Elements in Urine). The obtained results showed the matrix interference disallowed the instrument calibration with aqueous standards. The best analytical condition was achieved when matrix-matched standards were used in combination with Co as IS, which improved the recoveries obtained for As. Under this experimental condition, eight urine samples were analysed and spiked with 10 and 25 μg L−1 As and Se. The mean recoveries were 96 ± 6% (10 μg L−1 As), 95 ± 6% (25 μg L−1 As), 101 ± 7% (10 μg L−1 Se), and 97 ± 4% (25 μg L−1 Se).  相似文献   

16.
Páscoa RN  Tóth IV  Rangel AO 《Talanta》2011,84(5):1267-1272
This work exploits a multi-syringe injection analysis (MSFIA) system coupled with a long liquid waveguide capillary cell for the spectrophotometric determination of zinc and copper in waters. A liquid waveguide capillary cell (1.0 m pathlength, 550 μm i.d. and 250 μL internal volume) was used to enhance the sensitivity of the detection. The determination for both ions is based on a colorimetric reaction with zincon at different pH values. The developed methodology compares favourably with other previously described procedures, as it allows to reach low detection limits for both cations (LODs of 0.1 and 2 μg L−1, for copper and zinc, respectively), without the need for any pre-concentration step. The system also provided a linear response up to 100 μg L−1 with a high throughput (43 h−1) and low reagent consumption and effluent production. The developed work was applied to natural waters and three certified reference water samples.  相似文献   

17.
A novel multiplexed immunoassay for the analysis of phycotoxins in shellfish samples has been developed. Therefore, a regenerable chemiluminescence (CL) microarray was established which is able to analyze automatically three different phycotoxins (domoic acid (DA), okadaic acid (OA) and saxitoxin (STX)) in parallel on the analysis platform MCR3. As a test format an indirect competitive immunoassay format was applied. These phycotoxins were directly immobilized on an epoxy-activated PEG chip surface. The parallel analysis was enabled by the simultaneous addition of all analytes and specific antibodies on one microarray chip. After the competitive reaction, the CL signal was recorded by a CCD camera. Due to the ability to regenerate the toxin microarray, internal calibrations of phycotoxins in parallel were performed using the same microarray chip, which was suitable for 25 consecutive measurements. For the three target phycotoxins multi-analyte calibration curves were generated. In extracted shellfish matrix, the determined LODs for DA, OA and STX with values of 0.5 ± 0.3 μg L−1, 1.0 ± 0.6 μg L−1, and 0.4 ± 0.2 μg L−1 were slightly lower than in PBS buffer. For determination of toxin recoveries, the observed signal loss in the regeneration was corrected. After applying mathematical corrections spiked shellfish samples were quantified with recoveries for DA, OA, and STX of 86.2%, 102.5%, and 61.6%, respectively, in 20 min. This is the first demonstration of an antibody based phycotoxin microarray.  相似文献   

18.
Ulusoy Hİ  Akçay M  Gürkan R 《Talanta》2011,85(3):1585-1591
The simple and rapid preconcentration technique using cloud point extraction (CPE) was applied for the determination of As(V) and total inorganic arsenic (As(V) plus As(III)) in water samples by means of FAAS. As(V) has formed an ion-pairing complex with Pyronine B in the presence of cetyl pyridinium chloride (CPC) at pH 8.0 and extracted into the non-ionic surfactant Triton X-114, after centrifugation the surfactant-rich phase was separated and diluted with 1.0 mol L−1 HNO3 in methanol. The proposed method is very versatile and economic because it exclusively used conventional FAAS. After optimization of the CPE conditions, a preconcentration factor of 120, the detection and quantification limits of 1.67 and 5.06 μg L−1 with a correlation coefficient of 0.9978 were obtained from the calibration curve constructed in the range of 5.0-2200 μg L−1. The relative standard deviation, RSD as a measure of precision was less than 4.1% and the recoveries were in the range of 98.2-102.4%, 97.4-101.2% and 97.8-101.1% for As(V), As(III) and total As, respectively. The method was validated by the analysis of standard reference materials, TMDA-53.3 and NIST 1643e and applied to the determination of As(III) and As(V) in some real samples including natural drinking water and tap water samples with satisfactory results. The results obtained (34.70 ± 1.08 μg L−1 and 60.25 ± 1.07 μg L−1) were in good agreement with the certified values (34.20 ± 1.38 μg L−1 and 60.45 ± 1.78 μg L−1).  相似文献   

19.
A syringe to syringe dispersive liquid phase microextraction-solidified floating organic drop was introduced and used for the simultaneous extraction of trace amounts of albendazole and triclabendazole from different matrices. The extracted analytes were determined by high performance liquid chromatography along with fluorescence detection. The analytical parameters affecting the microextraction efficiency including the nature and volume of the extraction solvent, sample volume, sample pH, ionic strength and the cycles of extraction were optimized. The calibration curves were linear in the range of 0.1–30.0 μg L−1 and 0.2–30.0 μg L−1 with determination coefficients of 0.9999 and 0.9998 for albendazole and triclabendazole respectively. The detection limits defined as three folds of the signal to noise ratio were found to be 0.02 μg L−1 for albendazole and 0.06 μg L−1 for triclabendazole. The inter-day and intra-day precision (RSD%) for both analytes at three concentration levels (0.5, 2.0 and 10.0 μg L−1) were in the range of 6.3–10.1% and 5.0–7.5% respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, cow milk, honey, and urine samples.  相似文献   

20.
This study aims at developing a novel, sensitive, fast, simple and convenient method for separation and preconcentration of trace amounts of fluoxetine before its spectrophotometric determination. The method is based on combination of magnetic mixed hemimicelles solid phase extraction and dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene as a sorbent. The magnetic graphene was synthesized by a simple coprecipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The retained analyte was eluted using a 100 μL mixture of methanol/acetic acid (9:1) and converted into fluoxetine-β-cyclodextrin inclusion complex. The analyte was then quantified by fiber optic linear array spectrophotometry as well as mode-mismatched thermal lens spectroscopy (TLS). The factors affecting the separation, preconcentration and determination of fluoxetine were investigated and optimized. With a 50 mL sample and under optimized conditions using the spectrophotometry technique, the method exhibited a linear dynamic range of 0.4–60.0 μg L−1, a detection limit of 0.21 μg L−1, an enrichment factor of 167, and a relative standard deviation of 2.1% and 3.8% (n = 6) at 60 μg L−1 level of fluoxetine for intra- and inter-day analyses, respectively. However, with thermal lens spectrometry and a sample volume of 10 mL, the method exhibited a linear dynamic range of 0.05–300 μg L−1, a detection limit of 0.016 μg L−1 and a relative standard deviation of 3.8% and 5.6% (n = 6) at 60 μg L−1 level of fluoxetine for intra- and inter-day analyses, respectively. The method was successfully applied to determine fluoxetine in pharmaceutical formulation, human urine and environmental water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号