首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, a novel streptavidin functionalized graphene oxide/Au nanoparticles (streptavidin/GO/AuNPs) composite is prepared and for the first time used to construct sensitive chemiluminescent immunosensor for the detection of tumor marker. The streptavidin/GO/AuNPs composite and the immunosensor are characterized using scanning electron microscopy, static water contact angle measurement and electrochemical impedance spectroscopy. The biofunctionalized composite has large reactive surface area and excellent biocompatibility, thus the capture antibody can be efficiently immobilized on its surface based on the highly selective recognition of streptavidin to biotinylated antibody. Using α-fetoprotein (AFP) as a model, the proposed chemiluminescent immunosensor shows a wide linear range from 0.001 to 0.1 ng mL−1 with an extremely low detection limit down to 0.61 pg mL−1. The resulting AFP immunosensor shows high detection sensitivity, fast assay speed, acceptable detection and fabrication reproducibility, good specificity and stability. The assay results of serum samples with the proposed method are in an acceptable agreement with the reference values. This work provides a promising biofunctionalized nanostructure for sensitive biosensing applications.  相似文献   

2.
《Electroanalysis》2018,30(3):402-414
A sensitive electrochemical immunosensor for Hepatitis B virus surface antigen (HBsAg) detection was fabricated based on hemin/G‐quadruplex interlaced onto Fe3O4‐AuNPs or hemin ‐amino‐reduced graphene oxide nanocomposite (H‐amino‐rGO‐Au). G‐quadruplex DNAzyme, which is composed of hemin and guanine‐rich nucleic acid, is an effective signal amplified tool for its outstanding peroxidase activity and Fe3O4‐AuNPs or (H‐amino‐rGO‐Au) nanocomposites with quasi‐enzyme activity provide appropriate support for the immobilization of hemin/G‐quadruplex. The target protein was sandwiched between the primary antibody immobilized on the GO and secondary antibody immobilized on the Fe3O4‐AuNPs or (H‐amino‐rGO‐Au) nanocomposites and glutaraldehyde was used as linking agent for the immobilization of primary antibody on the surface of GO. Both Fe3O4‐AuNPs and H‐amino‐rGO‐Au nanocomposite and also hemin/G‐quadruplex can cooperate the electrocatalytic reduction of H2O2 in the presence of methylene blue as mediator. The proposed immunosensor has a wide linear dynamic range of 0.1 pg/ml to 300 pg/ml with a detection limit of 60 fg/ml when Fe3O4‐AuNPs was used for immobilization of hemin/G‐quadruplex, while the dynamic range and DL were 0. 1–1000 pg/mL and 10 fg/mL, respectively in the presence of H‐amino‐rGO‐ Au nanocomposite as platform for immobilizing of hemin/G‐quadruplex. The proposed immunosensor was also used for analysis of HBsAg in spiked human serum samples with satisfactory results.  相似文献   

3.
Three-dimensional macroporous gold nanoparticles/graphene composites (3D-AuNPs/GN) were synthesized through a simple two-step process, and were used to modify working electrode sensing platform, based on which a facile electrochemical immunoassay for sensitive detection of carcinoembryonic antigen (CEA) in human serum was developed. In the proposed 3D-AuNPs/GN, AuNPs were distributed not just on the surface, but also on the inside of graphene. And this distribution property increased the area of sensing surface, resulting in capturing more primary antibodies as well as improving the electronic transmission rate. In the presence of CEA, a sandwich-type immune composite was formed on the sensing platform, and the horseradish peroxidase-labeled anti-CEA antibody (HRP-Ab2)/thionine/nanoporous silver (HRP-Ab2/TH/NPS) signal label was captured. Under optimal conditions, the electrochemical immunosensor exhibited excellent analytical performance: the detection range of CEA is from 0.001 to 10 ng mL−1 with low detection limit of 0.35 pg mL−1 and low limit of quantitation (LOQ) of 0.85 pg mL−1. The electrochemical immunosensor showed good precision, acceptable stability and reproducibility, and could be used for the detection of CEA in real samples. The proposed method provides a promising platform of clinical immunoassay for other biomolecules  相似文献   

4.
We report on the construction of a label-free electrochemical immunosensor for detecting the core antigen of the hepatitis C virus (HCV core antigen). A glassy carbon electrode (GCE) was modified with a nanocomposite made from gold nanoparticles, zirconia nanoparticles and chitosan, and prepared by in situ reduction. The zirconia nanoparticles were first dispersed in chitosan solution, and then AuNPs were prepared in situ on the ZrO2-chitosan composite. In parallel, a nanocomposite was synthesized from AuNPs, silica nanoparticles and chitosan, and conjugated to a secondary antibody. The properties of the resulting nanocomposites were investigated by UV-visible photometry and transmission electron microscopy, and the stepwise assembly process was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. An sandwich type of immunosensor was developed which displays high sensitivity to the HCV core antigen in the concentration range between 2 and 512?ng?mL?1, with a detection limit of 0.17?ng?mL?1 (at S/N?=?3). This immunosensor provides an alternative approach towards the diagnosis of HCV.
Fig
A sandwich-type immunosensor was constructed for the detection of HCV core Ag. AuNPs/ZrO2-Chits nanocomposites were prepared by in situ reduction method. AuNPs/SiO2-Chits nanocomposite integrated with secondary antibody (Ab2) without labeled HRP. The immunosensor displayed high sensitivity to HCV core antigen with a detection limit of 0.17?ng?mL?1 (S/N?=?3).  相似文献   

5.
《Electroanalysis》2017,29(9):2098-2105
An ultrasensitive electrochemiluminescence (ECL) immunosensor for the detection of tetrodotoxin (TTX) is proposed, which are composed of the branched poly‐(ethylenimine) (BPEI) functionalized graphene (BGNs)/Fe3O4‐Au magnetic capture probes and luminol‐capped gold nanocomposites (luminol‐AuNPs) as the signal tag. Herein, a typical sandwich immunecomplex was constructed on the glassy carbon electrode. The BGNs/Fe3O4‐Au hybrids could efficiently conjugate primary antibody via the Au−S chemical bonds or Au−N chemical bonds and rapidly separate under external magnetic field. The introduction of BPEI to GO could enhance the luminol‐ECL intensity. Meanwhile, the multifunctional nanocomposites have been proved with good water‐solubility, excellent electron transfer, outstanding stability, etc. The luminescent luminol‐AuNPs, a high efficient electrochemiluminescence marker, can be assembled on the second antibody, which can produce the ECL signal to achieve the determination of TTX. This proposed ECL immunosensor with a linear range from 0.01–100 ng/mL can be applied in the detection of TTX in real samples with satisfactory results.  相似文献   

6.
A novel immunosensor based on graphite screen-printed electrodes (SPEs) modified with bismuth citrate was developed for the voltammetric determination of C-reactive protein (CRP) in human serum using quantum dots (QDs) labels. The sandwich-type immunoassay involved physisorption of CRP capture antibody on the surface of the sensor, sequential immunoreactions with CRP and biotinylated CRP reporter antibody and finally reaction with streptavidin-conjugated PbS QDs. The quantification of the target protein was performed with acidic dissolution of the PbS QDs and anodic stripping voltammetric detection of the Pb(II) released. Detection was performed at bismuth nanodomains formed on the sensor surface during the electrolytic preconcentration step, as bismuth citrate was reduced to metallic bismuth simultaneously with the deposition of Pb on the surface of the immunosensor. Under optimal conditions, the response was linear over the range 0.2–100 ng mL−1 CRP and the limit of detection was 0.05 ng mL−1 CRP. Since the modified SPE serves as both the biorecognition element and the QDs reader, the analytical procedure is simplified, the drawbacks of existing electroplated immunosensors are minimized while the proposed disposable sensing platform provides convenient, low-cost and ultrasensitive detection of proteins and wider scope for mass-production.  相似文献   

7.
Wang  Aiping  Li  Yuya  You  Xiaojuan  Zhang  Shoutao  Zhou  Jingming  Liu  Hongliang  Ding  Peiyang  Chen  Yumei  Qi  Yanhua  Liu  Yankai  Liang  Chao  Zhu  Xifang  Zhang  Ying  Liu  Enping  Zhang  Gaiping 《Journal of Solid State Electrochemistry》2023,27(2):489-499

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a grave threat to human life and health, it is essential to develop an efficient and sensitive detection method to identify infected individuals. This study described an electrode platform immunosensor to detect SARS-CoV-2-specific spike receptor-binding domain (RBD) protein based on a bare gold electrode modified with Ag-rGO nanocomposites and the biotin-streptavidin interaction system. The Ag-rGO nanocomposites was obtained by chemical synthesis and characterized by electrochemistry and scanning electron microscope (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to record the electrochemical signals in the electrode modification. The differential pulse voltammetry (DPV) results showed that the limit of detection (LOD) of the immunosensor was 7.2 fg mL−1 and the linear dynamic detection range was 0.015 ~ 158.5 pg mL−1. Furthermore, this sensitive immunosensor accurately detected RBD in artificial saliva with favorable stability, specificity, and reproducibility, indicating that it has the potential to be used as a practical method for the detection of SARS-CoV-2.

  相似文献   

8.
A novel experimental methodology based on a Prussian blue (PB) and gold nanoparticles (AuNPs) modified carbon ionic liquid electrode (CILE) was developed for use in a label-free amperometric immunosensor for the sensitive detection of human immunoglobulin G (HIgG) as a model protein. The CILE was fabricated by using the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate as binder. Controllable electrodeposition of PB on the surface of the CILE and coating with 3-aminopropyl triethylene silane (APS) formed a film with high electronic catalytic activity and large surface area for the assembly of AuNPs and further immobilization of HIgG antibody. The electrochemistry of the formed nanocomposite biofilm was investigated by electrochemical techniques including cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. The HIgG concentration was measured through the decrease of amperometric responses in the corresponding specific binding of antigen and antibody. The decreased differential pulse voltammetric values were proportional to the HIgG concentration in two ranges, 0.05–1.25 ng mL−1 and 1.25–40 ng mL−1, with a detection limit of 0.001 ng mL−1 (S/N = 3). This electrochemical immunoassay combined the specificity of the immunological reaction with the sensitivity of the AuNPs, ionic liquid, and PB amplified electrochemical detection and would therefore be valuable for clinical immunoassays.  相似文献   

9.
We report lithium ion intercalation mediated efficient exfoliation of graphite to form monolithic graphene sheets which have subsequently been investigated for the development of highly sensitive label-free electrochemical detection platform for cardiac biomarker, Troponin I (cTnI). The spectroscopic and morphological analysis demonstrated the formation of defect free graphene sheets which were successfully employed to fabricate an inter-digited microdevice in a drain-source configuration on a silicon biochip. The graphene gated biochip functionalized with anti-cTnI antibodies used in label free detection of cTnI which exhibited an excellent sensitivity in the picogram range (∼1 pg mL−1) for cTnI without the use of any enzymatic amplification that promises its potential applicability for bio-molecular detection in clinical diagnosis.  相似文献   

10.
Electrochemiluminescent (ECL) immunosensor with multiple signal amplification was designed based on gold nanoparticles (AuNPs), polyamidoamine dendrimers (PAMAM) and silver-cysteine hybrid nanoribbon (SNR). Low toxic l-cysteine capped CdSe QDs was chosen as the ECL signal probe. To verify the proposed ultrasensitive ECL immunosensor for β-adrenergic agonists (β-AA), we detected Brombuterol (Brom) as a proof-of-principle analyte. Therein, AuNPs as the substrate can simplify the experiment process, accelerate the electron transfer rate, and carry more coating antigen (Ag-OVA) to enlarge ECL signal. On one hand, SNR on the surface of electrode can avoid the aggregation of AuNPs, and SNR-PAMAM-AuNPs also can be acted as a good accelerator for electron transfer. On the other hand, PAMAM (16 -NH2) functionalized SNR (SNR-PAMAM) with numerous amino groups could be employed to bond abundant actived QDs to further amplify ECL signal. The new immunosensor can offer a simple, reliable, rapid, and selective detection for Brom, which have a dynamic range of 0.005–700 ng mL−1 with a low detection limit at 1.5 pg mL−1. The proposed biosensor will extend the application of nanomaterials in ECL immunoassays and open a new road for the detection of Brom and other β-AA in the future.  相似文献   

11.
We report the fabrication of polyamidoamine (PAMAM) dendrimer with 128 carboxyl group-encapsulated Pt nanoparticle-modified screen-printed carbon electrode, as an impedimetric biosensor, for the quantitative detection of human cardiac biomarker troponin-I (cTnI). PAMAM-Pt was electrochemically deposited over SPCE and its 128 terminal carboxyl groups were used as anchors for the site-specific biomolecular immobilization of protein antibody, anti-cTnI. The biosensor was characterized by contact angle measurements, transmission electron microscopy, UV-visible spectroscopy, and electrochemical techniques. A single-frequency impedance analysis study was utilized for the biomolecular sensing by monitoring the changes in the phase angle obtained at an optimized frequency resulting from antigen-antibody interactions. An optimized frequency of 100 Hz was obtained at which maximum changes in the phase angle were observed after immunoreactions for a given concentration of analyte. A concentration-dependent increase in the phase angle of the biosensor was observed with increasing cTnI concentration in the range of 1 pg mL?1 to 100 ng mL?1. Based on the concentration response data, the dissociation constant was found to be 0.51 pM reflecting high affinity of biosensor towards cTnI analyte arising due to high anti-cTnI loading with a better probe orientation on the 3-dimensional PAMAM-Pt structure.  相似文献   

12.
The three-dimensional fibril-like carbon fiber mat electrode (CFME) decorated with Au nanoparticles (AuNPs) was employed to construct Hg(II) sensing platform for the first time. The highly porous feature of CFME combining the high affinity of AuNPs for mercury endowed the sensing platform with high sensitivity and good reproducibility. Under optimal conditions, the prepared AuNPs/CFME was capable of sensing Hg(II) with a detection limit of 0.1 μg L 1 (S/N = 3) using differential pulse anodic stripping voltammetry (DPASV). Finally, the AuNPs/CFME was successfully demonstrated for the determination of Hg(II) in real water samples with satisfactory results.  相似文献   

13.
Label‐free logic gates (AND, OR, and INHIBIT) based on chemiluminescence (CL) as new optical readout signal have been developed by taking advantage of the unique CL activity of luminol‐ and lucigenin‐functionalized gold nanoparticles/graphene oxide (luminol‐lucigenin/AuNPs/GO) nanocomposites. It was found that Fe2+ ions could induce the CL emission of luminol‐lucigenin/AuNPs/GO nanocomposites in alkaline solution. On this basis, by using Fe2+ ions and NaOH as the inputs and the CL signal as the output, an AND logic gate was fabricated. When the initial reaction system contained luminol‐lucigenin/AuNPs/GO nanocomposites and NaOH, either Fe2+ ions or Ag+ ions could react with the luminol‐lucigenin/AuNPs/GO nanocomposites to produce a strong CL emission. This result was used to design an OR logic gate using Fe2+ ions and Ag+ ions as the inputs and CL signal as the output. Moreover, two INHIBIT logic gates for Fe2+ and Ag+ were also developed using by NaClO and L ‐cysteine as their CL inhibitors, respectively. Furthermore, the proposed logic gates were successfully used to detect Fe2+, Ag+, and L ‐cysteine, respectively. The developed logic gates may find future applications in sensing, clinical diagnostics, and environmental monitoring.  相似文献   

14.
基于AuNPs/PDDA-GO纳米复合物制备了一种新型电化学免疫传感器, 并将其用于SirT1的检测. 首先, 在电极表面修饰复合材料AuNPs/PDDA-GO, 然后将目标蛋白SirT1固定到修饰了AuNPs/PDDA-GO的电极表面, 再通过特异性免疫反应结合一抗(Ab1)和辣根过氧化酶标记的二抗分子(HRP-Ab2), 最后用示差脉冲伏安法检测电流信号, 实现了对SirT1蛋白水平的测定. 在优化的实验条件下, SirT1蛋白的浓度在0.1~100 ng/mL范围内与响应电流呈良好线性关系, 检出限为0.029 ng/mL.  相似文献   

15.
A highly sensitive impedimetric immunosensor based on a gold nanoparticles/multiwall carbon nanotube-ionic liquid electrode (AuNPs/MW-CILE) was developed for the determination of human epidermal growth factor receptor 2 (HER2). Gold nanoparticles were used to enhance the extent of immobilization and to retain the immunoactivity of the antibody Herceptin on the electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were employed for characterization of various layers coated onto the AuNPs/MW-CILE. The impedance measurements at different steps were based on the charge transfer kinetics of the [Fe(CN)6]3−/4− redox pair. The immobilization of antibody and the corresponding antigen–antibody interaction at the electrode surface altered the interfacial electron transfer. The interactions of antibody with various concentrations of antigen were also monitored via the change of impedance response. The results showed that the charge transfer resistance increases linearly with increasing concentrations of HER2 antigen. The linear range and limit of detection were found as 10–110 ng mL−1 and 7.4 ng mL−1, respectively. The sensitivity and specificity of the immunosensor were validated. The results showed that the prepared immunosensor is a useful tool for screening of trace amounts of HER2 in serum samples of breast cancer patients.  相似文献   

16.
We report on the modification of a graphene paste electrode with gold nanoparticles (AuNPs) and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen (HBsAg). To obtain the immunosensor, an antibody against HBsAg was immobilized on the surface of the electrode, and this process was followed by cyclic voltammetry and electrochemical impedance spectroscopy. The peak currents of a hexacyanoferrate redox system decreased on formation of the antibody-antigen complex on the surface of the electrode. Then increased electrochemical response is thought to result from a combination of beneficial effects including the biocompatibility and large surface area of the AuNPs, the high conductivity of the graphene paste electrode, the synergistic effects of composite film, and the increased quantity of HBsAb adsorbed on the electrode surface. The differential pulse voltammetric responses of the hexacyanoferrate redox pair are proportional to the concentration of HBsAg in the range from 0.5–800?ng?mL?1, and the detection limit is 0.1?ng?mL?1 (at an S/N of 3). The immunosensor is sensitive and stable.
Figure
We report on the modification of a graphene paste electrode with gold nanoparticles and a Nafion-L-cysteine composite film, and how this electrode can serve as a platform for the construction of a novel electrochemical immunosensor for the detection of hepatitis B surface antigen. The immunosensor is sensitive and stable.  相似文献   

17.
A facile and simple paper-based scanometric assay was developed to detect Pb2+ using GR5-DNAzyme. Magnetic beads (MBs) and gold nanoparticles (AuNPs) were used as a signal collector and a signal indicator, respectively. They were linked together by GR5-DNAzyme, comprising an enzyme and a substrate strand pairing up with each other. In the presence of Pb2+, the substrate strand is cut into two pieces, resulting in the disassembly of AuNPs from the MBs. These AuNPs were spotted on predefined areas on a chromatography paper, where signal is amplified through silver reduction. This sensing platform exhibits high sensitivity and selectivity toward Pb2+, giving a detection limit of 0.3 nM and a linear fitting range from 0.1 to 1000 nM. Testing of this biosensor in river water and synthetic urine samples also showed satisfying results. Besides offering simultaneous and multi-sample analysis, this paper-based sensing platform presented here could be potentially applied and served as a general platform for on-site, naked eyes, and low-cost monitoring of other heavy metal ions in environmental and body fluid samples.  相似文献   

18.
《中国化学快报》2023,34(4):107654
Mulit-enzyme cascades are a major type of chemical transformations and play a crucial role in biological signal transduction and metabolism. Herein, a trienzyme cascade-triggered fluorescent immunosensor platform was constructed by sequentially integrating alkaline phosphatase (ALP), tyrosinase (TYR) and horseradish peroxidase (HRP). The proposed platform was based on HRP-induced a rapid in situ fluorogenic reaction between dopamine (DA) and 1,5-dihydroxynaphthalene (DHA) to produce a strong yellow azamonardine fluorescent compound (AFC). The obtained AFC was clearly characterized by high-resolution mass spectrum, 1H NMR, 13C NMR and theoretical calculations. The integration of the two-enzyme system (TYR and HRP) or three-enzyme system (ALP, TYR and HRP) led to a maximum of 400.0-fold and 250.0-fold fluorescence enhancements, respectively. Using cardiac troponin I (cTnI) as the model antigen, a trienzyme cascade-triggered fluorescent immunosensor platform was developed for quantitative detecting cTnI in a wide linear range from 2 ng/mL to 150 ng/mL with a detection limit of 0.67 ng/mL. In addition, the proposed platform was successfully applied in detection of cTnI in serum of clinical patients. Overall, the developed fluorescent immunosensor performs powerful implications for researching enzyme cascade systems in the field of biomedicine.  相似文献   

19.
In this paper, a thiol graphene‐thiol chitosan‐gold nanoparticles (thGP‐thCTS‐AuNPs) nanocomposites film with porous structure was fabricated by electrochemically depositing on glassy carbon electrode (GCE), which exhibited good biocompatibility and improved conductivity, to construct immunosensor free label for detection of carcinoembryonic antigen (CEA). The electrochemical behavior of this immunosensor was investigated by cyclic voltammetry. Under the optimum conditions, the immunosensor revealed a good amperometric response to CEA in two linear ranges (0.3–8.0 ng mL?1 and 8.0–100 ng mL?1) with a detection limit of 0.03 ng mL?1. The results indicated that the immunosensor has the advantages of good selectivity, high sensitivity, and good stability for the determination of CEA.  相似文献   

20.
Tang J  Hu R  Wu ZS  Shen GL  Yu RQ 《Talanta》2011,85(1):117-122
A highly sensitive electrochemical immunosensor based on combination of chitosan (CHIT) and coral-shaped AuNPs (C-AuNPs) to form an immobilization matrix has been developed using human IgG as a model analyte. The inorganic-organic hybrid film with abundant adsorbing sites and large surface area can reserve the biocompatibility of the biomaterials which greatly increase loading amounts of assembling, thus, significantly improves the performance of biosensing. The morphology is studied by scanning electron microscopy (SEM). Under the optimized experimental conditions, the immunosensor exhibits excellent performance (e.g., a detection limit of 5 pmol L−1, a linear dynamic range of 3 orders of magnitude, high specificity). This possibly makes it an attractive platform for the direct immunoassay of human IgG or other biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号