首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
李江  卫芝贤 《光谱实验室》2007,24(2):165-168
采用硬脂酸溶胶凝胶法合成出钙钛矿型复合氧化物LaCoO3,并以其为催化剂对染料酸性红B进行降解实验.以高压汞灯为光源,研究了催化时间、催化剂用量、起始浓度以及溶液pH值对降解率的影响.在优化条件下,100mL、10mg/L酸性红B溶液用0.25g催化剂降解2h,降解率达到88.70%.  相似文献   

2.
采用沉淀法合成了Ag3VO4光催化剂,考察了光催化剂用量和亚甲基蓝初始浓度对催化性能的影响.结果表明:当催化剂用量为0.2g/100mL,亚甲基蓝初始浓度不大于15 mg/L时,亚甲基蓝的降解率可达90%以上.  相似文献   

3.
利用自制的催化装置降解甲基橙模拟染料废水,证明了纳米ZnTiO3粉体能够对甲基橙溶液进行有效的降解,并探讨了ZnTiO3的投加量、甲基橙溶液的初始浓度、反应时间、光照强度等因素对其影响。实验结果表明,在甲基橙溶液的初始浓度为15mg/L、ZnTiO3的用量为3g/L、反应180min后,甲基橙溶液的脱色率达到99.6%。  相似文献   

4.
研究了在可见光(40W白炽灯)照射下,以自制的锐钛型二氧化钛(即A-TiO2)对邻苯二甲酸二甲酯(DMP)的催化降解效果,分析了TiO2的掺Fe3+量、催化剂用量、邻苯二甲酸二甲酯初始浓度和溶液初始pH值等因素的影响.结果表明:在50mg/L的邻苯二甲酸二甲酯溶液(pH=7)中,加入0.0750g自制的掺Fe3+(摩尔分数)3%的A-TiO2,室温下可见光照反应1h,邻苯二甲酸二甲酯的降解率达到84.02%.  相似文献   

5.
采用水热合成法制备了介孔TiO2纳米管,并以介孔TiO2纳米管为载体,钨酸铵为钨源,采用传统浸渍方法制备了WO3/TiO2纳米管复合材料.讨论了以WO3/TiO2纳米管为催化剂,影响结晶紫光催化降解率的主要因素,实验结果表明:光催化降解结晶紫溶液较好的符合一级反应动力学过程.以500℃焙烧的WO3/TiO2纳米管复合材料为光催化剂,当催化剂用量为500mg/L,结晶紫溶液的起始浓度20mg/L时,光照90min,结晶紫的降解率达到95%以上.另外,催化剂具有较高的稳定性,失活后的催化剂可以通过简单的培烧再生.  相似文献   

6.
以低浓度甲硝唑为模型污染物,研究TiO2光催化降解甲硝唑废水.以5.0mL 60tmol/L的甲硝唑溶液为降解目标,考察了Cu2+浓度、溶液pH值、光照时间、TiO2用量等对甲硝唑降解率的影响.实验表明,当初始浓度为60μμmol/L的甲硝唑溶液、500mg/L H2O2溶液、225μmol/L的Cu2+溶液均取5.0mL参加反应,用硫酸调节pH约为3.0,当TiO2用量为4.12mg、光照反应时间为75min时,平均降解效果可达91.87%.  相似文献   

7.
研究了在紫外光(λ=365nm)照射下,以自制的掺铁锐钛矿型二氧化钛对甲基红的催化降解效果,分析了甲基红初始浓度、二氧化钛的用量、掺铁量、光照时间和溶液初始pH值等因素的影响.结果表明:在15mg/L的甲基红溶液(pH=5)中,加入0.7 g/L自制二氧化钛(掺铁量1%、摩尔分数),室温下紫外光照反应30min,甲基红的降解率达到99.21%.  相似文献   

8.
为使TiO2能够在可见光下发挥其于紫外激发的高光催化活性降解室内甲醛,采用水热处理法将TiO2与掺杂稀土离子Er3+的上转换发光剂Er3+∶YAlO3结合,制备具有可见光响应的Er3+∶YAlO3/TiO2光催化剂,并对其进行了表征分析。结果表明,TiO2以锐钛矿为主,且Er3+∶YAlO3可有效地将可见光上转换至可激发TiO2的紫外光。在箱式反应器中进行光催化降解气态甲醛,研究了甲醛初始浓度与催化剂用量对甲醛降解效率的影响。结果表明,该光催化反应的假一级反应速率常数( kapp )与甲醛初始浓度成正相关,而随催化剂用量的增加先升高后降低。当甲醛初始浓度为0.058 mg/m3、催化剂用量为0.1224 g/L时,kapp最大为3.65×10-3 min-1。该反应符合Langmuir-Hinshelwood模型,反应速率常数为5×10-8 mg/( L·min)。  相似文献   

9.
采用溶胶-凝胶-浸渍法制备TiO2/5A型催化剂,以其对水样中CN-降解率的大小来评价催化剂的光催化活性,并与P25型纳米TiO2催化效果作比较,从而探讨5A型分子筛负载纳米TiO2的百分含量、催化剂加入量、水样的pH值及CN-初始浓度对TiO2/5A光催化降解水中CN-催化活性的影响.结果表明:5A型分子筛负载纳米TiO2的量为20%、加入量为1.5g/L、pH=10、CN-初始浓度为50mg/L,反应时间为3h时,降解率达88.64%,且优于P25型纳米TiO2的降解效果.  相似文献   

10.
以CuCl2和NaOH为原料、微波液相加热法制得CuO/Cu2(OH)3Cl粉体作为光催化剂,XRD和FTIR进行了表征.用光度分析法测定了不同光源、溶液的酸度、催化剂的用量、光照时间等条件对染料脱色率的影响.结果表明,用太阳光作为光源照射4h,溶液的酸度为pH8,CuO/Cu3(OH)3 Cl的用量为40 mg/50 mL,氨基黑、靛蓝二磺酸钠等染料脱色率达到90%以上.加入Fe3 ,H2O2等其他物质可提高染料的脱色率.通过红外光谱和紫外光谱分析,表明染料分子在催化剂和光照条件下发生了降解.  相似文献   

11.
钠基膨润土与羟基铁溶液反应,经过焙烧,制得性能良好的纳米复合型催化剂,结合比表面孔隙分析(BET)、X射线衍射谱(XRD)和高分辨扫描电镜(HRTEM)对催化剂的比表面积、晶相和粒度进行表征。用光度法对该催化剂降解染料罗丹明B进行了研究,详细考察了溶液起始pH值、H2O2浓度、催化剂用量和起始浓度对降解的影响以及催化剂的可重复使用性,紫外-可见光谱对降解过程进行跟踪检测,并对复相光助Fenton过程与均相光助Fenton过程进行了比较。结果表明,复合型催化剂具有很高的比表面积,铁以高催化活性的α-Fe2O3存在于复合催化剂中;在pH 3.0,催化剂浓度为0.3 g·L-1,H2O2浓度为10 mmol·L-1实验条件下,100 mL 2.5×10-5 mol·L-1罗丹明B,紫外光照射4 h后,紫外-可见光谱显示罗丹明B的特征峰消失,其脱色率和CODCr去除率分别为97%和71%,对该催化剂进行处理后,可以重复使用,复相光降解率要远大于均相光降解率。  相似文献   

12.
Degradation of C.I. Direct Black 168 from aqueous solution using Fenton-like reactions combining ultrasound was investigated. In the presence of H2O2, the effect of the heterogeneous catalysts, such as fly ash, kaolinite or diatomaceous earth on the degradation of Direct Black 168 was observed under ultrasound. The fly ash was the most efficient catalyst. It is apparent that ultrasound can prompt the reaction to take place and give in higher degradation. In the combination of ultrasound and fly ash/H2O2, the effect of different system variables namely concentration of the dye, dosage of fly ash, concentration of H2O2, pH of solution and the addition of NaCl were studied. 99.0% removal ratio was achieved at initial concentration 100 mg/L, pH 3.0, and dosage of fly ash 2.0 g/L, as well as 2.94 mM H2O2. NaCl exhibited only a minor effect on the dye removal.  相似文献   

13.
Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.  相似文献   

14.
以提取萝卜硫素主要酶解因素:pH、催化缓冲液类型、Zn2+浓度、Vc的浓度为4个考察因素,分别设立3个水平,采用L9(34)正交试验设计,优化提取酶解体系.结果表明,各因素的重要性顺序为:pH>催化缓冲液类型>Vc的浓度>Zn2+浓度.西兰花种子生产萝卜硫素的最佳条件为:pH 5.0、Zn2+浓度为0.1mol/L、Vc的浓度为0.5mg/mL、以0.1mol/L醋酸-醋酸钠萝卜汁缓冲液为酶解缓冲体系.验证结果显示优选的缓冲液体系高效、稳定,可以作为西兰花种子提取萝卜硫素的酶解体系.  相似文献   

15.
Nano-sized ZnO powder was introduced to act as the sonocatalyst after the treatment of high-temperature activation, and the ultrasound of low power was used as an irradiation source to induce nano-sized ZnO powder performing sonocatalytic degradation of acid red B and rhodamine B. At the same time, the effects of operational parameters such as solution pH value, initial concentration of dyestuff and addition amount of nano-sized ZnO powder have been examined in this paper. We found that the degradation ratios of acid red B and rhodamine B in the presence of nano-sized ZnO powder were much higher than that with only ultrasonic irradiation. However, the degradation ratio of acid red B was about two times higher than that of rhodamine B for the initial concentration of 10.0 mg/L, addition amount of 1.0 g/L nano-sized ZnO powder, solution acidity of pH 7.0 and 60 min irradiation experimental condition. The difference of the degradation ratios can be illustrated by the difference of chemical forms of acid red B and rhodamine B in aqueous solution and the surface properties of nano-sized ZnO particles. In addition, the researches on the kinetics of sonocatalytic reactions of acid red B and rhodamine B have also been performed and found to the follow pseudo first-order kinetics. All the experiments indicated that the sonocatalytic method in the presence of nano-sized ZnO powder was an advisable choice for the treatments of non- or low-transparent organic wastewaters in future.  相似文献   

16.
以CdT e量子点作为荧光探针,基于荧光增敏法对对苯二胺进行了定量检测,考察了缓冲溶液体系、量子点浓度、反应时间等多种因素的影响。实验结果表明,在pH 7.6的0.2m ol/LN a2HPO4-N aH2PO4缓冲液中,反应时间为15m in,对苯二胺浓度为6.0×10-6—1.8×10-5m ol/L范围时,其线性回归方程为ΔF=75.64+7.95C(10-6m ol/L),相关系数和检出限分别为0.9989和2.1×10-8m ol/L。该方法检出限低,灵敏度高,为对苯二胺的测定提供了新的选择。  相似文献   

17.
采用特殊液相沉淀法制备纳米级的TiO2/SnO2复合粒子,对制备的纳米TiO2/SnO2采用XRD、TEM等手段进行了表征。用它做催化剂在日光下对甲基橙溶液进行了光催化实验。结果表明,纳米级TiO2/SnO2复合催化剂比纯TiO2的催化活性好,当SnO2摩尔百分数为20%时效果最佳,在60min内对10mg/L的甲基橙水溶液的降解率高达90.2%,具有较好的光催化活性。  相似文献   

18.
In this paper, preparing copper catalyst by ultrasound-assisted chemical precipitation method is investigated. The used equipment is JP-020 ultrasonic cleaner, power and frequency are 180 W and 40 kHz respectively. Under the action of ultrasound, CuSO4·5H2O is reduced by ascorbic acid to obtain copper. The products are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and catalytic performance test. The results show that the morphology of copper products is rod-like and irregular granular. Copper catalyst has good catalytic oxidation performance for dyes methylene blue, crystal violet, alizarin red and Rhodamine B. The catalytic efficiency of 10 mg catalyst copper to 6 mg/L methylene blue reaches 98.1%, and the catalytic efficiency of the catalyst increases with the increase of catalyst dosage and the decrease of dye solution concentration. In addition, the new preparation techniques for Cu-based catalysts based on coprecipitation method are compared. Finally, the development trend of the new technology of copper-based catalyst preparation based on coprecipitation method is pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号