首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bulky triarylphosphite ligands undergo facile orthometallation reactions with palladium and platinum precursors. The crystal structure of an example of the resultant palladacycles has been determined. The reactivity of some of the metallacycles with HCl, monodentate and bidentate phosphines and sodium diethyldithiocarbamate has been investigated, and the crystal structure of a diethyldithiocarbamate adduct of a palladacycle is presented. The palladacyclic complexes prove to be extremely active catalysts for the Suzuki coupling of aryl bromides with aryl boronic acids. They can also be used as catalysts for the coupling of alkylboronic acids. Meanwhile di- and trialkyl phosphine adducts of one of the palladacycles shows very high activity in the Suzuki coupling of aryl chlorides and can also be used to good effect for the Stille coupling of these substrates. The role of the phosphite ligand in the Suzuki coupling of aryl chlorides seems to be one of increasing catalyst longevity by stabilisation of the Pd(0) resting state.  相似文献   

3.
Palladium complexes of representative heteroatom-substituted secondary phosphine oxide (HASPO) preligands were synthesized and fully characterized, including X-ray crystal structure analysis. Importantly, these well-defined complexes served as highly efficient catalysts for Kumada-Corriu cross-coupling reactions of aryl, alkenyl, and even heteroaryl tosylates. Particularly, an air-stable catalyst derived from inexpensive PinP(O)H displayed a remarkably high catalytic efficacy, which resulted in cross-couplings at low catalyst loadings under exceedingly mild reaction conditions with ample scope.  相似文献   

4.
A variety of unsaturated thioethers have been subjected to cross‐coupling reactions with functionalized zinc reagents in the presence of a transition‐metal catalyst. Three different catalytic systems based on Pd(OAc)2 or [Ni(acac)2] and the ligands S‐Phos or DPE‐Phos gave the best results. N‐Heterocyclic thioethers based on a pyridine, pyrimidine, pyrazine, pyridazine, triazine, benzothiazole, benzoxazole, pyrrole, or quinazoline ring, as well as thiomethylacetylenes, serve as electrophiles in this cross‐coupling reaction. Aryl‐, heteroaryl‐, benzylic, and alkylzinc halides with sensitive functionalities, such as ester, nitrile, or ketone groups react at ambient temperature with unsaturated thioethers using a Ni catalyst. The corresponding Pd‐catalyzed reactions require slightly higher temperatures. Large‐scale cross‐coupling experiments (10–20 mmol) with N‐heterocycles are also reported.  相似文献   

5.
Palladium-mediated cross-coupling reactions are attractive organometallic transformations for the generation of C--C, C--N, C--O, and C--S bonds. Despite being widely employed in small-scale syntheses, cross-coupling reactions have not found important industrial applications because until recently, only reactive aryl bromides and iodides could be used as substrates. These substrates are generally more expensive and less widely available than their chloride counterparts. Over the past few years, new catalytic systems with the ability to activate unreactive and sterically hindered aryl chlorides have been developed. The new catalysts are based on palladium complexes that contain electron-rich and bulky phosphine or carbene ligands. The enhanced reactivity observed with these new systems has been attributed to the formation of unsaturated and reactive [PdL] species which can readily undergo oxidative addition reactions with ArX to yield [Pd(Ar)X(L)].  相似文献   

6.
张立 《化学研究》2014,(3):317-322
有机钯配合物由于其优异的催化性能在有机催化反应中得到了广泛应用.作者综述了有机钯配合物催化剂在聚合反应、偶联反应、羰基化反应、氧化反应及加氢反应等方面的应用研究进展,同时对其发展方向与应用前景进行了展望.  相似文献   

7.
8.
9.
10.
11.
12.
13.
The reactivity of palladium complexes of bidentate diaryl phosphane ligands (P2) was studied in the reaction of nitrobenzene with CO in methanol. Careful analysis of the reaction mixtures revealed that, besides the frequently reported reduction products of nitrobenzene [methyl phenyl carbamate (MPC), N,N′‐diphenylurea (DPU), aniline, azobenzene (Azo) and azoxybenzene (Azoxy)], large quantities of oxidation products of methanol were co‐produced (dimethyl carbonate (DMC), dimethyl oxalate (DMO), methyl formate (MF), H2O, and CO). From these observations, it is concluded that several catalytic processes operate simultaneously, and are coupled via common catalytic intermediates. Starting from a P2Pd0 compound formed in situ, oxidation to a palladium imido compound P2PdII?NPh, can be achieved by de‐oxygenation of nitrobenzene 1) with two molecules of CO, 2) with two molecules of CO and the acidic protons of two methanol molecules, or 3) with all four hydrogen atoms of one methanol molecule. Reduction of P2PdII?NPh to P2Pd0 makes the overall process catalytic, while at the same time forming Azo(xy), MPC, DPU and aniline. It is proposed that the Pd–imido species is the central key intermediate that can link together all reduction products of nitrobenzene and all oxidation products of methanol in one unified mechanistic scheme. The relative occurrence of the various catalytic processes is shown to be dependent on the characteristics of the catalysts, as imposed by the ligand structure.  相似文献   

14.
15.
Recently, the development of more sustainable catalytic systems based on abundant first‐row metals, especially nickel, for cross‐coupling reactions has attracted significant interest. One of the key intermediates invoked in these reactions is a NiIII–alkyl species, but no such species that is part of a competent catalytic cycle has yet been isolated. Herein, we report a carbon–carbon cross‐coupling system based on a two‐coordinate NiII–bis(amido) complex in which a NiIII–alkyl species can be isolated and fully characterized. This study details compelling experimental evidence of the role played by this NiIII–alkyl species as well as those of other key NiI and NiII intermediates. The catalytic cycle described herein is also one of the first examples of a two‐coordinate complex that competently catalyzes an organic transformation, potentially leading to a new class of catalysts based on the unique ability of first‐row transition metals to accommodate two‐coordinate complexes.  相似文献   

16.
17.
《Mendeleev Communications》2022,32(5):576-578
Novel highly soluble palladium-based complexes with ferrocenecarboxylic acid of general formula [Pd(lut)2(FcCOO)2] (lut is 2,6-or 3,4-lutidines) were synthesized and structurally characterized by single-crystal X-ray diffraction. The catalytic oxidation of 1,2-diphenyl-acetylene with these complexes gave dibenzo[a,e]pentalene derivative along with other products.  相似文献   

18.
19.
N-heterocyclic carbene ligands with picolyl (L1H2Br2, L3H2Br2) and benzyl (L2H2Br2, L4H2Br2) linked biphenyl backbone were synthesized and characterized. Their palladium(II) complexes [PdL1]Br2 ( 1 ), [PdL2Br2] ( 2 ), [PdL3]Br2 ( 3 ), and [PdL4Br2] ( 4 ) were synthesized by direct method using Pd(OAc)2. All complexes ( 1 – 4 ) were characterized by CHN analysis, electrospray ionization-MS, nuclear magnetic resonance, and single-crystal X-ray diffraction. Molecular structures confirm the distorted square planar geometry around the Pd(II) center. All of them showed good catalytic activity in acylative Suzuki cross coupling of phenyl boronic acid with benzoyl chloride to afford benzophenone in good yields.  相似文献   

20.
Two new trans- and cis-[(NHC)(2)PdX(2)] (X=Cl, Br) complexes of N/O-functionalized N-heterocyclic carbenes employed in a highly convenient amine-free Sonogashira cross-coupling reaction in air in a polar mixed aqueous medium are reported. Specifically, the trans-[{1-benzyl-3-(3,3-dimethyl-2-oxobutyl)imidazol-2-ylidene}(2)PdBr(2)] (3) and cis-[{1-benzyl-3-(N-tert-butylacetamido)imidazol-2-ylidene}(2)PdCl(2)] (4) complexes effectively catalyzed the Sonogashira cross-coupling reaction of aryl iodides with substituted acetylenes in air in a mixed solvent (DMF/H(2)O, 3:1 v/v) under amine-free conditions. Interestingly, these trans- and cis-[(NHC)(2)PdX(2)] (X=Cl, Br) complexes, with two N-heterocyclic carbene ligands, exhibited superior activity compared with the now popular PEPPSI (pyridine enhanced precatalyst preparation, stabilization and initiation)-themed analogues, trans-[(NHC)Pd(pyridine)X(2)] (X=Cl, Br), 3 a and 4 a, with one N-heterocyclic carbene ligand and a "throw away" pyridine ligand in a trans disposition to each other. The higher activities of 3 and 4 compared with PEPPSI analogues 3 a and 4 a are attributed to more-electron-rich metal centers, as revealed by DFT studies, in the former complexes and is in concurrence with a more electron-rich metal center being effective in facilitating the oxidative addition of aryl halide, often a rate-determining step in palladium-mediated cross-coupling reactions. Complexes 3 and 4 were prepared from the corresponding silver analogues by transmetalation with [(cod)PdCl(2)], whereas the corresponding PEPPSI analogues 3 a and 4 a were obtained directly from the imidazolium halide salts by reaction with PdCl(2) in pyridine in the presence of K(2)CO(3) as base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号