首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Xiao-Qian Yang 《中国物理 B》2022,31(7):70202-070202
Perturbation analysis and scale expansion are used to derive the (2+1)-dimensional coupled nonlinear Schrödinger (CNLS) equations that can describe interactions of two Rossby waves propagating in stratified fluids. The (2+1)-dimensional equations can reflect and describe the wave propagation more intuitively and accurately. The properties of the two waves in the process of propagation can be analyzed by the solution obtained from the equations using the Hirota bilinear method, and the influence factors of modulational instability are analyzed. The results suggest that, when two Rossby waves with slightly different wave numbers propagate in the stratified fluids, the intensity of bright soliton decreases with the increases of dark soliton coefficients. In addition, the size of modulational instable area is related to the amplitude and wave number in y direction.  相似文献   

3.
The interaction between broadband drift mode turbulence and zonal flows has been studied through the wave-kinetic approach. Simulations have been conducted in which a particle-in-cell representation is used for the quasiparticles, while a fluid model is employed for the plasma. The interactions have been studied in a plasma edge configuration which has applications in both tokamak physics and magnetopause boundary layer studies. Simulation results show the development of a zonal flow through the modulational instability of the drift wave distribution, as well as the existence of solitary zonal flow structures about an ion gyroradius wide, drifting towards steeper relative density gradients.  相似文献   

4.
The dynamics of an elongated attractive Bose-Einstein condensate in an axisymmetric harmonic trap is studied. It is shown that density fringes caused by self-interference of the condensate order parameter seed modulational instability. The latter has novel features in contradistinction to the usual homogeneous case known from nonlinear fiber optics. Several open questions in the interpretation of the recent creation of the first matter-wave bright soliton train [Nature (London) 417, 150 (2002)]] are addressed. It is shown that primary transverse collapse, followed by secondary collapse induced by soliton-soliton interactions, produces bursts of hot atoms at different time scales.  相似文献   

5.
In this paper, the one-dimensional(1D) particle-in-cell(PIC) simulation is used to study the modulation instability of ion acoustic waves in electron–ion plasmas. The ion acoustic wave is described by using a nonlinear Schr¨odinger equation(NLSE) derived from the reductive perturbation method. Form our numerical simulations, we are able to demonstrate that,after the modulation, the amplitude increases steadily over time. Furthermore, by comparing the numerical results with traditional analytical solutions, we acquire the application scope for the reductive perturbation method to obtain the NLSE.We also find this method can also be extended to other fields such as fluid dynamics, nonlinear optics, solid state physics,and the Bose–Einstein condensate to validate the application scope of the results from the traditional perturbation method.  相似文献   

6.
《Physics letters. A》1986,116(5):224-226
An average lagrangian is given for the slow dispersion of nonlinear capillary-gravity Stokes waves in water of arbitrary uniform depth. The modulational instability is discussed using the averaged lagrangian.  相似文献   

7.
This letter reports the first results on the coupled modulational instability of copropagating spin waves in a magnetic film. Strong instability was observed for the two waves with either attractive or repulsive nonlinearity. If the two waves have attractive nonlinearity, the instability leads to the formation of bright solitons. If the two waves have repulsive nonlinearity, the process results in the formation of black solitons. The instability was also observed for the two waves in separated attractive-repulsive nonlinearity regimes.  相似文献   

8.
Relativistic effects on the linear and nonlinear properties of electron plasma waves are investigated using the one-dimensional quantum hydrodynamic (QHD) model for a two-component electron?Cion dense quantum plasma. Using standard perturbation technique, a nonlinear Schr?dinger equation (NLSE) containing both relativistic and quantum effects has been derived. This equation has been used to discuss the modulational instability of the wave. Through numerical calculations it is shown that relativistic effects significantly change the linear dispersion character of the wave. Unlike quantum effects, relativistic effects are shown to reduce the instability growth rate of electron plasma waves.  相似文献   

9.
10.
A nonlinear Schrödinger equation for ion-acoustic waves in a collision free plasma, consisting of warm ions and hot isothermal electrons is derived using the KBM method. It is found that for finite ion temperature these waves are modulationally unstable only in a range of wave numbers. As the ratio of ion to electron temperature increases, the range of the unstable region decreases and shifts towards small wave numbers.  相似文献   

11.
12.
A model equation describing drift Alfvén wave with E × B nonlinearity is derived. For a special ordering a nonlinear Schrödinger equation is derived, which governs modulational instability of the drift Alfvén wave. Translational invariance is assumed along the magnetic field. The relation between the characteristic scale lengths parallel and perpendicular to the drift flow for the onset of cell formation has been found. The influence of perpendicular ion viscosity is also discussed.  相似文献   

13.
Theoretically possible rogue edge wave are studied over cylindrical bottom in the framework of nonlinear shallow water equations in a weakly nonlinear limit. The nonlinear mechanisms (nonlinear dispersion enhancement, modulation instability and multimodal interactions) of possible anomalous edge wave appearance are analyzed.  相似文献   

14.
We demonstrate in an optical fiber that third-order dispersion yields an unexpected symmetry-breaking dynamics of the modulational instability spectrum. It is found in particular that this spectral asymmetry does not smoothly and monotonically increase when approaching the zero-dispersion wavelength. Instead, it exhibits several local extrema and it can even be reversed at a particular dispersion value. We interpret this behavior as resulting from interactions between dispersive waves and solitons generated from modulation instability.  相似文献   

15.
Observation of modulational instability in optical fibers   总被引:1,自引:0,他引:1  
  相似文献   

16.
The modulational instability of ion acoustic waves is studied in the presence of a dc magnetic field, taking the ion temperature into account. It is well known that the instability sets in for wave numbers exceeding 1.47 kD when there is no magnetic field and the ion temperature is negligible. The instability behaviour, however, changes drastically when either the magnetic field is switched on or the ion temperature becomes important or both. In general three different regions emerge wherein the waves becomes modulationally unstable. The relative sizes of these regions change as the magnetic field, the angle of propagation and the ion temperature are varied.  相似文献   

17.
18.
We study theoretically and experimentally the switching dynamics of a nonlinear optical bistable system that exhibits modulational instability in the vicinity of its lower limit point. We show that modulational instability induces premature upswitching and, in this way, truncates the bistable cycle. The role of the modulation instability is identified experimentally through the observation of the transient pattern formation that precedes upswitching. Our experiment illustrates the importance of cooperative behavior in practical distributed bistable systems.  相似文献   

19.
We study modulational instability in nonlinear arrays of subwavelength metallic nanoparticles and analyze numerically nonlinear scenarios of the instability development. We demonstrate that modulational instability can lead to the formation of regular periodic or quasiperiodic modulations of the polarization. We reveal that such nonlinear nanoparticle arrays can support long-lived standing and moving oscillating nonlinear localized modes--plasmon oscillons.  相似文献   

20.
We report what is believed to be the first experimental demonstration of the azimuthal self-breaking of intense beams containing a vortex phase dislocation into sets of optical spatial solitons in a quadratic nonlinear material. The observations were performed in a KTP crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号