首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Thomson scattering from a low electron density (3×1012cm?3) stationary hydrogen plasma was performed using a 3 watt CW argon ion laser along with a photon counting technique. An estimation is given for the laser power required for CW Thomson scattering in pulsed plasma experiments.  相似文献   

2.
We present atomic, energy, and charge spectra of ions accelerated at the front surface of a silicon target irradiated by a high-contrast femtosecond laser pulse with an intensity of 3×1016 W/cm2, which is delayed with respect to a cleaning nanosecond laser pulse of 3-J/cm2 energy density. A tremendous increase in the number of fast silicon ions and a significant growth of their maximum charge in the case of the cleaned target from 5+ to 12+ have been observed. The main specific features of the atomic, energy, and charge spectra have been analyzed by means of one-dimensional hydrodynamic transient-ionization modeling. It is shown that fast highly charged silicon ions emerge from the hot plasma layer with a density a few times less than the solid one, and their charge distribution is not deteriorated during plasma expansion.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

3.
The results of an investigation of the electromagnetic wave polarization, probing high-temperature laser plasma, as well as spatial-temporal structure of the magnetic fields, electron density, current density, and electron drift velocity are presented. To create the plasma, plane massive Al targets were irradiated with the second harmonic of a phoenix Nd laser at intensities up to 5·1014 W/cm2. It was shown that the magnetooptical Faraday effect is the main mechanism responsible for the changing polarization of the probing wave. Magnetic fields up to 0.4 MG with electron densities ∼1020 cm−3 were measured. Analysis of the magnetic field spatial distribution showed that the current density achieved the value ∼90 MA/cm2 on the laser axis. The radial structure of the magnetic field testified to the availability of the reversed current in the laser plasma. The spatial and temporal resolutions in these experiments were equaled to ∼5 μsec and ∼50 psec, respectively. Translated from Preprint No. 35 of the Lebedev Physics Institute, Moscow, 1993.  相似文献   

4.
An experimental investigation of the profiles of the 4471 Å and 4922 Å lines in the afterglow of an high density plasma of helium produced by laser is reported. The measured profiles of these two neutral helium lines and their forbidden components are given at electron densities between 5 · 1016 cm?3 and 2 · 1017 cm?3 and for electron temperature between 3 and 4 eV.  相似文献   

5.
An intense laser radiation (1012 to 1011 W/cm−2) focused on the solid target creates a hot (≥1 keV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy (λ=0.53 μm) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space of ∼3 m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼1011 W/cm−2.  相似文献   

6.
A novel class of rare-earth-doped solid-state lasers is described. The ground-state depleted laser is pumped by an intense (more than tens of kW cm–2) narrow-band (less than a few nm) laser source and is characterized by: (1) an unusually low laser ion doping density (5 to 10×1018ion cm–3), (2) an unusually large fractional excited population inversion density (4 to 8×1018 ion cm–3, or >75%), (3) a gain element that is optically thick at the pump wavelength and (4) a gain element that has a substantially uniform gain distribution due to a bleaching of the pump transition at the pump intensity utilized. These features enable efficient room-temperature operation of rare-earth-ion laser transitions terminating on the ground manifold. The relationships between laser parameters (cross-sections, saturation fluences and fluxes, bleaching wave velocities, etc.) are given and laser performance scaling relationships are presented and discussed.  相似文献   

7.
The plasma line broadening of Hα fine-structure lines is investigated with Doppler-free saturation and polarization spectroscopy in He-H gas and are discharges at plasma densities of 108 cm?3 <N?1.4×1014 cm?3. With a single-mode laser, the shift and broadening of four resolved Hα fs lines are measured in a low pressure discharge forN<1011 cm?3. With an intense, broadband multi-mode laser the plasma effects of Hα are investigated up toN=1.4×1014 cm?3 in a hollow cathode are. Calculations in the classical phase shift and impact approximations can explain the experimental data and peculiarities of the low-density plasma effects and show that the ions are the dominant perturbers. Ion dynamical effects, perturber mass and temperature dependence, are observed and interpreted. Applications of the nonlinear techniques to other H and D lines, other atoms, and for H and D plasma diagnostics are discussed.  相似文献   

8.
段国平  陈俊领  韩俊鹤  黄明举 《光子学报》2014,40(11):1657-1661
利用等离子增强化学气相沉积系统制备了本征非晶硅薄膜,并选用488 nm波长的连续激光进行晶化.采用喇曼测试技术对本征非晶硅薄膜在不同激光功率密度和扫描时间下的晶化状态进行了表征,并用514 nm波长与488 nm波长对样品的晶化效果进行了比较.测试结果显示:激光照射时间60 s, 激光功率密度在1.57×105 W/cm2时,能实现非晶硅向多晶硅的转变,在功率密度达到2.7 56×105 W/cm2时,有非晶开始向单晶转变,随着激光功率密度的继续增加,晶化结果仍为单晶;在功率密度为2.362×105 W/cm2下,60 s照射时间晶化效果较好;在功率密度为2.756×105 W/cm2和照射时间为60 s的条件下,用488 nm波长比514 nm波长的激光晶化本征非晶硅薄膜效果较好,并均为单晶态.  相似文献   

9.
The scaling of recombination XUV lasers to shorter wavelengths requires laser plasmas produced at initial electron densities close to solid. With pump laser pulses longer than a few tens of picoseconds the hydrodynamic motion of the plasma during the interaction makes this difficult to achieve. In contrast, when picosecond laser pulses are used the laser energy is absorbed close to solid density since the plasma expansion is insignificant during the laser pulse. This results in hot near solid density plasmas which are needed for hydrogenic recombination X-ray lasers operating in the water window. Experimental observations have shown that a fully ionized aluminium plasma with a temperature of about 400 eV and a density well above 1023 cm–3 is produced when an aluminium target is irradiated with a single 3.5 ps high power KrF laser pulse.  相似文献   

10.
Micropores up to 30?C100 ??m in size (bulk density ??105 cm?3) are obtained in NaCl, KCl, KBr, and RbI via the effect of a pulse of a CO2 laser with power density 106?C107 W cm?2 up to 5 ??s long. When a pore appears, plasma formation is initiated. The average temperature is ??5500 K and the pressure is ??104 kg cm?2. The dependence of the average weight of the material removed from the pore on the energy of the crystal lattice is found. Pore formation occurs mainly via the effect of the radiation pulse, due to evaporation at the absorption wave front (velocity, 5 m s?1) and plastic deformation. The annealing kinetics of micropores and the effect of the ionizing radiation on the bulk pore formation in NaCl crystals are investigated.  相似文献   

11.
Laser plasmas generated by femtosecond radiation on the surface of boron and molybdenum targets are investigated by the shadowgraph method. The modes of single-pulse and multipulse interaction of laser radiation with a target are compared. The occurrence of plasma bullets is discussed, which were observed on both single-pulse and multipulse interaction with the same area of a target. The wavefront velocities of expanding boron and molybdenum plasmas were measured to be 5 × 104 and 6 × 103 m s?1, respectively. The electron density measured by interferometry using a time delay of 800 ps in a boron plasma excited by 795-nm radiation with an intensity of 1016 W cm?2 amounted to 8 × 1019 cm?3. The correlation between some specific features of the plasma and the generation of the 3/2 harmonic, observed on multipulse interaction of femtosecond radiation with a boron target, is discussed.  相似文献   

12.
Ions of organic molecules and polymers as well as multiply ionized hydrocarbons were synthesized and detected with a time-of-flight mass analyzer in laboratory experiments simulating with a laser the plasma processes that accompany a hypervelocity micrometeorite impact on the target surface. A hypervelocity impact of micrometeorites moving at velocities of 80 km s?1 on a inorganic target was simulated with a Q-switched laser. The laser provided a power density of 109?1011 W cm?2 in a spot with an impact diameter of 30–150 μm for a pulse duration of 7–10 ns and a laser plasma electron density of 105?106 K. The ions of organic compounds are shown to be synthesized mostly during the free expansion of a hot laser plasma at the stage of its cooling and recombination if, initially, the plasma was completely atomized and ionized. Molecular ions have high yields only for a carbon target. The results obtained indicate that organic or other polyatomic compounds can be abiogenically synthesized in intense hypervelocity meteorite impacts on the Earth’s surface at the early stage of its formation during meteorite showers and in hypervelocity collisions of dust particles in interstellar molecular clouds.  相似文献   

13.
Electron and ion density gratings induced by two intersecting ultrashort laser pulses at intensities of 1016 W/cm2 or lower are investigated. The ponderomotive force generated by the inhomogeneous intensity distribution in the intersecting region of the interfering pulses produces deep electron and ion density modulations at a wavelength less than a laser wavelength in vacuum. Dependence of the density modulation on the plasma densities, temperatures, and the ion mass, as well as the laser pulse parameters are studied analytically and by particle-in-cell simulations. It is found that the density peaks of such gratings can be a few times that of the initial plasma density and last as long as a few picoseconds. It is also demonstrated that the scattering of signal pulses by such a bulk density grating results in high-harmonic generation. The density gratings may be incorporated into ion-ripple lasers [K.R. Chen and J.M. Dawson, Phys. Rev. Lett. 68, 29 (1992)] to generate ultrashort X-ray pulses of a few angstroms by using electron beams at only a few tens of MeV only. PACS 52.35.Mw; 42.65.Ky; 52.25.Os  相似文献   

14.
利用1064 nm Nd:YAG激光器研究了激光诱导铁条等离子体的特征参数。为了减小测量误差和谱线自发辐射跃迁几率不确定性带来的计算误差,采用改进的迭代Boltzmann方法精确求解铁等离子体的电子温度为8058 K。Lorentz函数拟合Fe I 376.553 nm得到等离子体的电子数密度为8.71017 cm-3。分析表明等离子体的加热机制主要是逆轫致过程,其吸收系数是0.14 cm-1。实验数据证实激光诱导铁等离子体处于局部热力学平衡状态和光学薄状态。  相似文献   

15.
Second harmonic generation is observed in Si and Ge at electron-hole plasma densities of 1021-1022 cm?3 and found to depend strongly on crystal orientation. We suggest that a lower crystal symmetry within the absorption volume is consistent with a model in which depletion of covalent bond charge, and subsequent lattice softening, is brought about by laser excitation of a high density of electrons into antibonding states.  相似文献   

16.
The spectra and dynamics of emission from regions of a laser plasma torch located at different distances from a polycrystalline CuSbS2 target irradiated by a neodymium laser (W=(3–5)×108 W/cm2, ?=20 ns, f=12 Hz, 73x03BB;=1.06μm) were investigated. The emission data were used to estimate the average temperature (≤0.82 eV) and the electron density ((1.82?1.92)×1016 cm?3) in the laser torch and the recombination times of ions (t r(S2+)=15 ns, t r(Cu+)=65?85 ns), as well as to analyze the efficiency of filling of excited atomic levels. A model describing the target destruction and the evolution of the processes accompanying spread of the laser plasma is proposed.  相似文献   

17.
Atmospheric argon plasma jets are generated with the rod-tube/tube high voltage electrode and a ring ground electrode at 8 kHz sinusoidal excitation voltage. It is found that the vibrational temperature, electronic excitation temperature, atomic oxygen density and spectral intensity with the rod-tube high voltage electrode are enhanced significantly than that with the tube high voltage electrode. The atomic oxygen density, molecular nitrogen density, and average electronic density are about magnitude of 1016 cm?3, 1015 cm?3, and 1012 cm?3 respectively, and the excited Ar, N2, OH and O are presented in the plasma plume with the rod-tube/tube high voltage electrode.  相似文献   

18.
The problem of heating of a solid target to generate a nonequilibrium plasma by subnanosecond laser pulses is considered. For an appreciable absorption of energy from a Nd-glass laser, the critical density of the electrons in the plasma turns out to be 1021 cm−3. These electrons can be heated up to 107 K or more by using pulses of about 10 picosecond duration and absorbed energy flux of the order of 1021 erg cm−2 sec−1. Starting from neutral atoms in a solid with a high atomic number, e.g., Z=26, for times in the picosecond regime the relevant rate equations are solved analytically to predict densities of the atoms at different ionization levels. It is shown that during such a short time the population density of the ions isoelectronic to neon builds up to a very large amount. This in turn leads to the population inversion in the 4s → 3p soft x-ray laser transition, via the electron-impact excitation of the 4s level of the isoelectronic neon ion. For the effective pumping times of the order of 5 picoseconds, a gain of the order of 102 db cm−1 is predicted for the laser transition in Fe XVII, Co XVIII or Cu XX.  相似文献   

19.
In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×104 W/cm2, and the average peak power density is 2.6×105 W/cm2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.  相似文献   

20.
A dense compact plasmoid generated at the pinch collapse stage is revealed in a plasma focus discharge by laser optical methods. The initial size of the plasmoid is ~1 mm, its electron density is more than 2 × 1019 cm–3, and the plasmoid propagates along the axis from the anode at an average velocity of more than 107 cm/s. A shock wave is generated in the residual argon plasma during the motion of the bunch, its density decreases to 1018 cm–3 at a distance of 3 cm from its place of generation, and the plasmoid expands by 3–5 times and almost merges together with the leading edge of the shock wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号