首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An algebraic-variational approach to the theory of collective motion previously applied in variant forms to pairing and monopole interaction models is here developed for an exactly soluble shell model Hamiltonian with R(5) symmetry. The spectrum of this class of Hamiltonian operators has previously been shown to represent a two-dimensional vibrator-rotator. The approximation scheme developed yields almost exact results up to the two-phonon level in the spherical region and goes over smoothly into a theory of the lowest states of the ground state rotational band in the deformed regime.  相似文献   

2.
3.
Excitation functions, angular distributions and differential ranges were measured for the 26Mg(18O, 16O)28Mg reaction at 18O beam energies of 20–45 MeV. Excitation functions only were measured for the reactions 14C(18O, 19O)13C, 14C(18O, 16O)16C, 14C(18O, 20O)12C, 14C(18O, 15N)17N and 18O(18O, 19O)17O, 18O(18O, 16O)20O, 18O(18O, 15N)21F at 18O beam energies of 13–41 MeV. We have identified these as direct reactions in which a single neutron, a two-neutron cluster, a deuteron and a triton are transferred between projectile and target.

The cross sections for two-neutron transfer reactions were found to be relatively high and those for the 18O+18O and the 14C+18O reactions were higher than the ones of single-neutron transfers over most of the energy range.

Attempts were made to apply the theory of Buttle and Goldfarb for single-neutron transfer to the case of two-neutron transfer in the 26Mg(18O, 16O)28Mg reaction below the Coulomb barrier. It is shown that for those reactions for which the assumptions, implicit in the model, are valid, good agreement is obtained with experiment. We also tried to apply the diffraction model of Dar and Kozlovsky to the calculation of the angular distribution of these reactions. A good fit to the experimental results could be obtained if quite different sets of parameters were used in the calculations for the two bombarding energies.  相似文献   


4.
Angular distributions of cross sections and analyzing powers have been measured for 18O(p, p)18O and 18O(p, p1)18O1 (1.98 MeV) in 25 keV intervals for proton energies between 3.8 and 6.1 MeV. A phase-shift analysis of the elastic scattering data was carried out, yielding resonance parameters for 16 levels in 19F in the excitation energy region 11.6–13.8 MeV. The results generally are in good agreement with previous work. On the basis of spin, parity, excitation energy and a comparison of reduced proton widths with reduced neutron widths of levels in 19O, an assignment of T = 32 could be made to at least five of the levels, including the analog of the broad 32+ level in 19O at 5.45 MeV. A Legendre-polynomial analysis of the inelastic scattering data suggests that the cross section for proton energies between 5.0 and 5.5 MeV is dominated by the broad 32+ resonance at Ep = 5.15 MeV.  相似文献   

5.
Differential cross sections for the 17O(p, d0)16O reaction have been measured at the incident proton energies 8.62, 9.56, 10.5, 11.16 and 11.44 MeV. Both the BHMM and DWBA theories have been applied to these data, and to published analysing power data for the reactions 16O(d, p0)17O and 16O(d, p1)17O1. While some parameter adjustment is necessary to obtain good fits with the BHMM theory, the adjusted parameters produce predictions in good agreement with analysing power data. The DWBA theory, however, produces good fits with proton parameters deduced from measurements of proton elastic scattering from 17O, provided the deuteron parameters used give good predictions for both differential cross section and vector analysing power data for the reaction 16O(d, d0)16O.  相似文献   

6.
7.
The structure of the 20O nucleus was studied by the 18O(18O, 16O)20O reaction at E1ab = 52 MeV. Angular distributions for the transitions to the lowest four states in 20O were obtained and analyzed with finite-range DWBA calculations. Optical potential sets were used which fit the experimental elastic scattering differential cross sections over almost the whole angular range. The two L = 0 transitions to the ground state and the 4.45 MeV state of 20O populated by the 18O(18O, 16O) reaction were analyzed with exact finite-range DWBA calculations using microscopic form factors. These calculations underestimate the absolute cross sections by a factor of 11. The relative strength of the two L = 0 transitions is well reproduced in the 18O(18O, 16O) reaction. However, DWBA calculations for the 18O(t, p)20O reaction overestimated the relative cross sections for the excited 0+ state by a factor of 6. Several model wave functions were tested for the ground-state transition. It was found that the absolute cross sections of the (18O, 16O) reaction are very sensitive to the mixing of shell-model configurations. The angular distribution shapes are also slightly dependent on the mixing.  相似文献   

8.
The 17O(p, p)17O and 17O(p, α0)14N reactions have been studied in the energy range Ep = 0.5–1.33 MeV. Excitation functions for elastic scattering measured at several angles give lp values for six resonances and Jπ; T values of 3+; 1 and 2+; 1 for the states at 6.16 and 6.28 MeV, respectively. From both reactions, Jπ limitations were found for six resonant levels. The 17O(p, α0)14N reaction also yields information on T-assignments and level formation parameters. Experimental results are discussed in terms of shell-model configurations.  相似文献   

9.
The total angular momentum transfer (j) dependence was studied for orbital angular momentum transfers l = 1, 2, and 3 in the (19F, 16O) reactions on 28, 30Si and 60Ni. In contrast to the strong j-dependence for the l = 2 transitions to 31, 33P states, no distinct j-dependence was found for the l = 1 and l = 3 transitions to 63Cu states. Previously reported results for the 28Si(19F, 16O)31P reaction were re-analyzed using optical-potential sets which fit the elastic-scattering data for both the entrance and exit channels. Results of DWBA calculations without use of spin-orbit potentials were found to be out of phase with the data for all l-transfers and the j-dependence could not be reproduced. Both of these problems were alleviated by including spin-orbit forces in the optical potentials. However, a good fit to the 28Si(19F, 16O)31P data was obtained only if the optical potentials that fit the elastic scattering data were modified for the exit channel.  相似文献   

10.
The reactions 18O(d, t)17O and 18O(d, τ)17N have been investigated at ifEd = 52 MeV. Energy spectra of tritons and τ particles have been measured up to excitation energies of 25 MeV in 17O and 12 MeV 17N, respectively, and spectroscopic factors have been obtained by a DWBA analysis of the measured angular distributions. From a comparison of the t-and τ-spectra the distribution of T = 12and32 spectroscopic strengths in 17O could be deduced and analog relations between T = 32 states in 17N and 17O could be established. Nearly the total T = 32 strengths of the 1p12and 1p32 shells and nearly the complete T = 12 strength of the 1p12 shell have been found, whereas only one third of the T = 12 strength of the 1p32. Shell could be clearly identified. The observed centroid energies are understood from the different 1d521p12?1) and 1d521p32?1 effective residual interactions. This supports a strong isospin dependence of the 1p spin-orbit splitting.  相似文献   

11.
The 107Ag residual nucleus was studied in the core-excitation model using the (p, t) and (τ, d) reactions. The L, J, π of levels between 0.0 and 2.25 MeV was deduced from the combined reactions. The octupole state observed at 2.19 MeV in other experiments was resolved in (p, t) into a triplet of states at 2.182, 2.203 and 2.229 MeV; octupole strength was observed in (p, t) over a range from 1.144 to 2.229 MeV. Core-excitation wave functions for the quadrupole 2+ and 2'+ vibration doublets of 107Ag were constructed using electromagnetic data. These wave functions, combined with data from the 108Pd(p, t) core reaction, effectively reproduced the 109Ag(p, t) differential cross sections to these states. The ground-state L = 0 transfer in (p, t) to 107Ag was only 0.752±0.113 as strong as the corresponding transfer to 106pd. this is an unexpectedly large blocking effect for an unpaired proton to exert upon a neutron-transfer reaction. An apparent dependence of the (p, t) angular distributions to states of 107Ag built upon the same core excitation was observed, depending upon the J of the final state.  相似文献   

12.
At a bombarding energy of 47.5 MeV, the 17O(α, d)19F reaction is found to populate strongly only those positive-parity states that are known to consist predominantly of (sd)3 configurations. Distorted-wave calculations based on transfer amplitudes computed from shell-model wave functions provide good agreement to the measured angular distributions — in both shape and magnitude.  相似文献   

13.
The effective Hamiltonian for the Op shell has been calculated up to second order using modified Sussex matrix elements. The resulting spectra and binding energies are compared with experiment and the role of the effective three-body interaction is discussed.  相似文献   

14.
Spectra and angular distributions for the reactions 54, 56, 58Fe(16O, 12C)58, 60, 62Ni (Ex = 0.0–4.5 MeV) have been measured at 50 MeV with an energy resolution of 45–80 keV using a Q3D spectrograph. The selectivity of the (16O, 12C) reaction is found to be very similar to the (6Li, d) reaction. The close correspondence recently noted between the (6Li, d) spectra and levels strongly excited in (t, p) and (3He, n) two-nucleon transfer reactions is also observed to be present for the (16O, 12C) reaction. Relative α spectroscopic factors for (16O, 12C) and (6Li, d) obtained in a DWBA analysis assuming direct one-step α-cluster transfer are in very good quantitative agreement. Unnatural parity states, whose excitation is forbidden in the DWBA α-cluster approximation, are observed to be very weakly populated. These results, together with previous work on s-d shell and Ni targets, strongly suggest that the spectroscopic information provided by the (16O, 12C) and (6Li, d) reactions is essentially the same and that this information may be reliably extracted by DWBA analysis.  相似文献   

15.
Particle and particle-γ measurements were performed to determine the cross sections for population of the 8.87 (2?), 10.35 (4+), 11.08 (3+) and 11.096 MeV (4+) states in 16O by the 12C(6Li, d) and 13C(6Li, t) reactions in the energy range from 20—34 MeV. In general, statistical compound nuclear calculations correctly predict the magnitude of the cross sections of the unnatural parity states and underpredict those for the natural parity states. The population of the 10.35 MeV 4+ state in the 13C(6Li, t) reaction is correctly predicted by these calculations. These measurements support earlier claims that the large 12C(6Li, d) cross section to the 11.096 MeV 4+ state is a result of multistep processes.  相似文献   

16.
Angular distributions for the 16O(7Li,3He)20F reaction, at a bombarding energy of 24 MeV, have been measured for all states below 6.25 MeV excitation, using a gas target and a multi-angle spectrograph. Low-lying core-excited states are populated much less strongly than known (sd)4 states. Cross sections decrease rapidly with excitation energy, but states at 4.20, 4.52, 4.58 and 5.41 MeV are quite strong — suggesting they have high spin and (sd)4 configurations. Previously suggested high-spin states at 4.73 and 4.76 MeV are weak, implying they are probably of core-excited character.  相似文献   

17.
Isomer ratios for the reaction 29Si(18O, p2n)44gSc, 44gSc have been deduced from activity measurements for projectile energies between 30 and 99 MeV. Statistical model calculations show that the isomer ratio dependence on projectile energy up to about 80 MeV can be adequately described by assuming a fixed ratio of quadrupole to dipole γ-ray strengths. Such a ratio of E2/E1 strengths agrees with corresponding values deduced from the literature. The values of the γ-ray strength ratios needed to fit the experimental isomer ratios are extremely sensitive to the relative amounts of quadrupole γ-ray admixture and to the presence of discrete levels other than those which conform to the yrast line.  相似文献   

18.
We calculate the potential energy of weakly interacting instanton and anti-instanton quarks in the O(3) non-linear σ model, which leads us to a two-component massive fermion theory. The exact solution for the ground state of the theory is built.  相似文献   

19.
Angular distributions of cross section and analyzing power for elastic scattering of protons from 15N have been measured for Ep = 2.7–7.0 MeV. A phase-shift analysis of the data yields spin-parity assignments and level parameters for seventeen states of 16O in the excitation energy region 14.8–18.6MeV. Three of the resonances have not previously been identified, among them being a broad Jπ = 2? level at Ep = 6.1 MeV which is almost certainly the analog of the 2? 1p1h state with configuration (d32, p12?1) at Ex ∽ 5.0 MeV in 16N. The broad level previously reported near Ep = 5.0 MeV has been observed and its parameters determined. A resonance analysis of the phase shifts yielded values of Er, Γ and Γp for all of the levels. The Jπ assignments are in agreement with previously reported values. For resonances having J = l, the data can usually be fit with a resonant phase shift corresponding to either J = l + 1 or J = l ? 1, in addition to the phase shift for J = l. Which of the two spurious-J solutions occurs seems to depend on whether the partial wave through which the resonant state is formed is J = l + 12or J = l ? 12.  相似文献   

20.
An algorithm for the calculation of representation matrices for the totally symmetric representations [N] of the group U(6) is described. Applications to multiple quadrupole excitation processes in nuclei are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号