首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upconversion (UC) spectra of Ho3+/Yb3+ codoped Y2O3, Gd2O3 bulk ceramics were obtained under the excitation of a 976 nm diode laser. Systematic experimental studies, including power dependence, luminescence lifetime, and the intensity ratio σ for the green to NIR emissions, were carried out in order to confirm the UC mechanism of Ho3+ ions. Our results demonstrated that the NIR emission was associated with the 5F4/5S25I7 transition of Ho3+ ions without the contribution of the 5I45I8 transition for Ho3+/Yb3+ codoped Y2O3 and Gd2O3 bulk ceramics. Additionally, population saturation in the 5I7 energy level had been observed in Ho3+/Yb3+ codoped Y2O3, Gd2O3 bulk ceramics. All experimental observations can be well explained by the steady-state rate equations.  相似文献   

2.
Gd2O3:Sm3+ and Gd2O3:Sm3+,Bi3+ powders were prepared by a combustion method. Their structures were determined using X-ray diffraction. UV-visible absorption and photoluminescence spectra were investigated for Gd2O3:Sm3+ and Gd2O3:Sm3+,Bi3+ at different annealing temperatures and different doping concentrations. The emission spectra of all samples presented the characteristic emission narrow lines arising from the 4G5/26HJ transitions (J=5/2, 7/2, and 9/2) of Sm3+ ions upon excitation with UV irradiation. The emission intensity of Sm3+ ions was largely enhanced with introducing Bi3+ ions into Gd2O3:Sm3+ and the maximum occurred at a Bi3+ concentration of 0.5 mol%. The relevant mechanisms were discussed with the sensitization theory by Dexter and the aggregation behavior of Bi3+ ions.  相似文献   

3.
Ultraviolet upconversion emissions around 314 nm from 6PJ states of Gd3+ ions have been observed in Y1.98 − xGdxHo0.02O3 (x = 0.02, 0.10, 0.20, and 0.30) oxide ceramics under the excitation of a continuous-wave 532-nm laser. We found that the energy transfer process from Ho3+ to Gd3+ plays an important role in populating the 6PJ states of Gd3+. The doping of Gd3+ ions does not affect 5G4 and 5G5 states but only the 3D3 state of Ho3+. The emissions from 3D3 state decrease with the increase of Gd3+ concentration. Power dependence curves and time-resolved spectra have been measured to identify the proposed upconversion mechanism.  相似文献   

4.
5 mol% of Pr3+ and Tm3+ ions activated calcium gadolinium tungstate (Ca2Gd2W3O14) phosphors were synthesized by traditional solid state reaction method. Crystalline phase structure was identified from the X-ray diffraction (XRD) profiles. From the scanning electron microscopy (SEM) images, we have observed the agglomeration of the particles, and average grain size is around 40-300 nm. Using the energy dispersive X-ray analysis (EDAX) and Fourier transform infrared (FTIR) spectra, identified the elements and functional groups present in the prepared phosphors. The emission spectrum of Pr3+: Ca2Gd2W3O14 powder phosphors have shown an intense red emission at 615 nm with the excitation wavelength λexci=450 nm and thus these red color emitting powder phosphors are used as one of the components in the preparation of WLEDs. The excitation spectrum of Tm3+: Ca2Gd2W3O14 powder phosphor has shown a ligand to metal charge transfer (W-O) band (LMCT) within the WO42− group. Emission spectrum of Tm3+: Ca2Gd2W3O14 phosphors have shown blue emissions at 453 nm (1D23F4).  相似文献   

5.
Spectral-kinetic characteristics of Gd3+ and Ce3+ luminescence from a series of Ce3+-doped alkali gadolinium phosphates of MGdP4O12 type (M=Li, Na, Cs) have been studied within 4.2-300 K temperature range using time-resolved luminescence spectroscopy techniques. The processes of energy migration along the Gd3+ sub-lattice and energy transfer between the Gd3+ and Ce3+ ions have been investigated. Peculiarities of these processes have been compared for MGdP4O12 phosphate hosts with different alkali metal ions. A contribution of different levels from the 6Pj multiplet of the lowest Gd3+ excited state into the energy migration and transfer processes has been clarified. The phonon-assisted occupation of high-energy 6P5/2, 3/2 levels by Gd3+ in the excited 6Pj state has been revealed as a shift of Gd3+6Pj8S7/2 emission into the short-wavelength spectral range upon the temperature increase. The relaxation of excited Gd3+ via phonon-assisted population of Gd3+6P5/2 level (next higher one to the lowest excited 6P7/2) is supposed to be responsible for the rise in probability of energy migration within the Gd3+ sub-lattice initiating the Gd3+→Ce3+ energy transfer at T<150 K, whereas further intensification of Gd3+→Ce3+ energy transfer at T>150 K is explained by the increase in probability of Gd3+ relaxation into the highest 6P3/2 level of the 6Pj multiplet. An efficient reversed Ce3+→Gd3+ energy transfer has been revealed for the studied phosphates at 4.2 K.  相似文献   

6.
In single crystal colquiriite LiCaAlF6 doped with Gd3+ ions two EPR spectra of the Gd3+ ions with the Laue site-symmetry groups Ci and C3i were observed. The spectrum angular dependence for trigonal Gd3+ centre was investigated in detail and corresponding spin Hamiltonian parameters were fitted. From analysis of the spin Hamiltonian tensorsB 4 andB 6 it was established that Gd3+ with the Laue group C3i substitutes at Ca2+ site with the excess charge compensation by an ion located along the threefold axis from this site. The transformation formulas for a sixth-rank irreducible Hermitian tensor under coordinate rotation are tabulated in an explicit form. By using the EPR data for Gd3+ substituted in a variety of host crystals, the fourth-rank and sixth-rank tensors of Gd3+ spin Hamiltonians were tabulated and correlated with structures of the coordination polyhedra at substitution sites. The results suppose a predominance of quadratic crystal field contributions into the spin Hamiltonian tensorB 4 of Gd3+.  相似文献   

7.
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films.  相似文献   

8.
Gd2O3:Eu3+ and Li-doped Gd2O3:Eu3+ luminescent thin films have been grown on Si(100) substrates using pulsed laser deposition. The films grown at different deposition conditions show different crystalline and morphology structures and luminescent characteristics. Although both cubic and monoclinic crystalline structures were observed in both Gd2O3:Eu3+ and Li-doped Gd2O3:Eu3+ films, the cubic structure becomes more dominant for Li-doped Gd2O3:Eu3+ films. The photoluminescence brightness data obtained from Li-doped Gd2O3:Eu3+ films indicate that Si(100) is a promising substrate for growth of high-quality Li-doped Gd2O3:Eu3+ thin-film red phosphor. In particular, the incorporation of Li+ ions into the Gd2O3 lattice induced a change of crystallinity and enhanced surface roughness. Two major factors to determine photoluminescence brightness for Li-doped Gd2O3:Eu3+ films were crystalline phase and surface roughness. The highest emission intensity was observed with Gd1.84Li0.08Eu0.08O3, whose brightness was a factor of 2.1 larger than that of Gd2O3:Eu3+ films. This phosphor is promising for applications in flat-panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

9.
Spectra of Eu3+ in various dielectric matrices (Gd2O3:Eu3+, Y2O3:Eu3+, Eu2O3, and mSiO2/Gd2O3:Eu3+ mesoporous particles) are studied by local cathodoluminescence. The results allowed identification of the local environment of Er3+ ions in amorphous samples and detection of the monoclinic Eu2O3 phase impurity in samples with yttrium oxide. The cathodoluminescence spectra of chemically pure Y2O3, Eu2O3, and Gd2O3 are recorded. Conclusions about the structural features of the materials are made and confirmed by other methods (XRD and EPMA).  相似文献   

10.
We report, for the first time, on room temperature cw laser action of NdP5O14 and NdAl3(BO3)4 at 1.3 μm wavelength. The emission cross sections of the transition4 F 3/24 I 13/2 are 0.24·10?19 cm2 and 1.74·10?19 cm2, respectively. The lowest observed threshold was 45 mW and the slope efficiency was nearly 10%. The minimum threshold is expected to be about 5 mW of absorbed pump light for both materials.  相似文献   

11.
The luminescent characteristics of Li2O-B2O3-P2O5-CaF2 (LBPC) glasses doped with Gd3+ and Tb3+ ions and codoped with Ce3+ are studied by pulsed optical spectrometry under electron beam excitation. It is found that in glass with Ce3+ and Gd3+ ions a decrease in the decay time of gadolinium luminescence in the 312-nm band (6 P J 8 S 7/2) was observed. It is shown that in the glass LBPC: Tb, Ce, an increase in the emission intensity in the main radiative transitions in terbium ion was observed. In the kinetics of luminescence band 545 nm of LBPC: Tb, Ce glasses, is present stage of buildup, the character of which changes with the doped of Ce3+ ions. The mechanism of energy transfer in LBP glasses doped with rare elements is discussed.  相似文献   

12.
Zinc phosphate glasses doped with Gd2O3:Eu nanoparticles and Eu2O3 were prepared by conventional melt-quench method and characterized for their luminescence properties. Binary ZnO-P2O5 glass is characterized by an intrinsic defect centre emission around 324 nm. Strong energy transfer from these defect centres to Eu3+ ions has been observed when Eu2O3 is incorporated in ZnO-P2O5 glasses. Lack of energy transfer from these defect centres to Eu3+ in Gd2O3:Eu nanoparticles doped ZnO-P2O5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between the luminescent centre and Eu3+ ions. Both doped and undoped glasses have the same glass transition temperature, suggesting that the phosphate network is not significantly affected by the Gd2O3:Eu nanoparticles or Eu2O3 incorporation.  相似文献   

13.
The nanowire growth behavior and photoluminescence characteristics of red-emitting oxide phosphor Gd2−xEuxO3 have been investigated in the function of activator (Eu3+) concentrations (x=0.08, 0.12, 0.16, 0.20, and 0.24). Nanowires of Gd2−xEuxO3 phosphor were prepared by the dehydration of corresponding hydroxides Gd1−x/2Eux/2(OH)3 obtained by the hydrothermal reaction. Highly uniform nanowires of 20-30 nm in diameter can grow up to several tens of micrometers in length. A number of defects on the surface of Gd1.92Eu0.08O3 nanowires, which are induced during structural transformation from hexagonal hydroxide to cubic oxide, strongly decrease the luminescence efficiency in comparison with that of the bulk phosphor. In contrast, the photoemission intensity of nanowires is significantly improved with increasing Eu3+ content (x) of Gd2−xEuxO3 solid solution. The highest relative emission intensity of nanowires is observed when the x value is close to x=0.20. This content is much higher than the optimal concentration of Eu3+ (x=0.08-0.10) for the bulk Gd2O3:Eu powder.  相似文献   

14.
We have observed an underdamped, temperature dependent optical phonon in the non-polar ferroelastic compounds NdP5O14 and LaP5O14. These materials exhibit a second-order displacive phase transition from C2h to D2h point group symmetry at temperatures slightly above ambient. The soft mode is observed in both phases.  相似文献   

15.
A red-emitting phosphor material, Gd2Ti2O7:Eu3+, V4+, by added vanadium ions is synthesized using the sol-gel method. Phosphor characterization by high-resolution transmission electron microscopy shows that the phosphor possesses a good crystalline structure, while scanning electron microscopy reveals a uniform phosphor particle size in the range of 230-270 nm. X-ray photon electron spectrum analysis demonstrates that the V4+ ion promotes an electron dipole transition of Gd2Ti2O7:Eu3+ phosphors, causing a new red-emitting phenomenon, and CIE value shifts to x=0.63, y=0.34 (a purer red region) from x=0.57, y=0.33 (CIE of Gd2Ti2O7:Eu3+). The optimal composition of the novel red-emitting phosphor is about 26% of V4+ ions while the material is calcinated at 800  °C. The results of electroluminescent property of the material by field emission experiment by CNT-contained cathode agreed well with that of photoluminescent analysis.  相似文献   

16.
Gd3+-substituted micro-octahedron composites (FexCo1−x/CoyGdzFe3−yzO4) in which the Fe-Co alloy has either a bcc or fcc structure and the oxide is a spinel phase were fabricated by the hydrothermal method. The X-ray diffraction (XRD) patterns indicate that the as-synthesized Gd3+-substituted micro-octahedron composites are well crystallized. Scanning electron microscopy (SEM) images show that the final product consists of larger numbers of micro-octahedrons with the size ranging from 1.3 to 5 μm, and the size of products are increased with increasing the concentration of KOH. The effect of the Co2+/Fe2+ ratio (0?Co2+/Fe2+?1) and substitution Fe3+ ions by Gd3+ ions on structure, magnetic properties of the micro-octahedrons composites were investigated, and a possible growth mechanism is suggested to explain the formation of micro-octahedrons composites. The magnetic properties of the structure show the maximal saturation magnetization (107 emu/g) and the maximal coercivity (1192 Oe) detected by a vibrating sample magnetometer.  相似文献   

17.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

18.
Transparent Li-doped Gd2O3:Eu3+ thin-film phosphors were prepared by a modified sol-gel method. The effect of the Li+ ions on luminescent properties of the thin film was investigated. The results indicated that incorporation of Li+ ions into Gd2O3 lattice could result in a remarkable increase on photoluminescence or X-ray excited luminescence, and the strongest emission was observed from Gd1.84Li0.08Eu0.08O3−δ film, in which the intensity was increased by a factor of 1.9 or 2.3 in comparison with that of Gd1.92Eu0.08O3 film. And it could be achieved the highest intensity for sintering the Gd1.84Li0.08Eu0.08O3−δ film at 700 °C. Such a temperature is much lower than the typical solid-state reaction temperature for its powder phosphors. This kind of transparent thin-film phosphors may promise for application to micro X-ray imaging system.  相似文献   

19.
J. P. Shen  C. F. Ding 《Laser Physics》2012,22(11):1659-1663
A compact, diode-pumped passively Q-switched Nd3+:Gd3Ga5O12 (Nd:GGG) laser with Cr4+:YAG saturable absorber has been successfully demonstrated. Stable Q-switched pulses with pulse energy of 100 ??J and high peak power of 14 kW have been obtained. The pulse width was as short as 7 ns with low repetition rate of 10 kHz. The dependence of pulse width, pulse repetition rate, pulse energy and pulse peak power on pump power have been measured respectively. Experimental results reveal that the Nd:GGG crystal with Cr4+:YAG saturable absorber is suitable for narrow pulse width and high power passively Q-switched lasers.  相似文献   

20.
We have made a series of spectroscopic measurements to better understand the optical properties and concentration quenching characteristics of the stoichiometric laser material NdP5O14. The results of fluorescence lifetime measurements in the presence of different surface environments indicates that the surface condition affects the concentration quenching whereas lifetime measurements under applied uniaxial stress show that the presence of internal strains in the crystal is not significantly effective in fluorescence quenching. A comparison of the internal reflection spectrum with the normal infrared spectrum did not reveal any significant differences in the Nd3+ energy levels. Photoacoustic spectroscopy results proved difficult to interpret but appear to be consistent with the presence of surface quenching of excitons and indicate that the intrinsic quantum efficiency of Nd3+ ions in the pentaphosphate host in the absence of concentration quenching is approximately 0.90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号