首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A psychophysical pitch function, describing the relation of perceived magnitude of pitch to the frequency of a pure tone, was determined by absolute magnitude estimation. Pitch estimates were made by listeners with relative pitch and by absolute pitch possessors for 27 tones spanning a frequency range of 31.5-12,500 Hz in 1/3 octave steps. Results show that the pitch function, plotted in log-log coordinates, is steeper below 200 Hz than at higher frequencies. It is hypothesized that the pitch function's bend may reflect the diversity of neurophysiological mechanisms of pitch encoding in frequency ranges below and above 200 Hz. The variation of the function's slope implies that pitch distances between tones with the same frequency ratios are perceived as larger below 200 Hz than at higher frequencies. It is argued that this implication may apply only to a purely sensory concept of pitch distance and cannot be extended to the perception of musical intervals, a phenomenon governed by musical cognitive principles. The results also show that pitch functions obtained for listeners with relative and absolute pitch have a similar shape, which means that quantitative pitch relations determined for both groups of listeners do not differ appreciably along the frequency scale.  相似文献   

2.
The performance of the human pitch control system was characterized by measurement of the speed of pitch shift and pitch shift response speed (inverse of reaction time) at various initial pitch and loudness levels. Data from three nonsinger adult male subjects and one professional singer suggest a strong inverse correlation (r greater than 0.78) between initial pitch and rate of pitch rise. This study showed no significant relation between initial loudness and rate of pitch rise. Also, vocal response speed showed no significant relation with either initial pitch or loudness. However, it is suggested that pitch shift response speed might be related to the second formant frequency of the target vowel. A composite index of pitch control performance capacity was defined as the product of response speed and vocal fold contractile velocity. From experimental data, the composite index was able to reflect a distinct 74% superior performance by the professional singer (relative to the average maximum performance capacity of nonsingers). It is suggested that the product-based composite index of performance capacity can serve as a sensitive means for vocal proficiency determination.  相似文献   

3.
How fast speakers can change pitch voluntarily is potentially an important articulatory constraint for speech production. Previous attempts at assessing the maximum speed of pitch change have helped improve understanding of certain aspects of pitch production in speech. However, since only "response time"--time needed to complete the middle 75% of a pitch shift--was measured in previous studies, direct comparisons with speech data have been difficult. In the present study, a new experimental paradigm was adopted in which subjects produced rapid successions of pitch shifts by imitating synthesized model pitch undulation patterns. This permitted the measurement of the duration of entire pitch shifts. Native speakers of English and Mandarin participated as subjects. The speed of pitch change was measured both in terms of response time and excursion time-time needed to complete the entire pitch shift. Results show that excursion time is nearly twice as long as response time. This suggests that physiological limitation on the speed of pitch movement is greater than has been recognized. Also, it is found that the maximum speed of pitch change varies quite linearly with excursion size, and that it is different for pitch rises and falls. Comparisons of present data with data on speed of pitch change from studies of real speech found them to be largely comparable. This suggests that the maximum speed of pitch change is often approached in speech, and that the role of physiological constraints in determining the shape and alignment of F0 contours in speech is probably greater than has been appreciated.  相似文献   

4.
Congenital amusia is a lifelong disorder of music processing that has been ascribed to impaired pitch perception and memory. The present study tested a large group of amusics (n=17) and provided evidence that their pitch deficit affects pitch processing in speech to a lesser extent: Fine-grained pitch discrimination was better in spoken syllables than in acoustically matched tones. Unlike amusics, control participants performed fine-grained pitch discrimination better for musical material than for verbal material. These findings suggest that pitch extraction can be influenced by the nature of the material (music vs speech), and that amusics' pitch deficit is not restricted to musical material, but extends to segmented speech events.  相似文献   

5.
The nature of the neural processing underlying the extraction of pitch information from harmonic complex sounds is still unclear. Electrophysiological studies in the auditory nerve and many psychophysical and modeling studies suggest that pitch might be extracted successfully by applying a mechanism like autocorrelation to the temporal discharge patterns of auditory-nerve fibers. The current modeling study investigates the possible role of populations of sustained chopper (Chop-S) units located in the mammalian ventral cochlear nucleus (VCN) in this process. First, it is shown that computer simulations can predict responses to periodic and quasiperiodic sounds of individual Chop-S units recorded in the guinea-pig VCN. Second, it is shown that the fundamental period of a periodic or quasiperiodic sound is represented in the first-order, interspike interval statistics of a population of simulated Chop-S units. This is true across a wide range of characteristic frequencies when the chopping rate is equal to the f0 of the sound. The model was able to simulate the results of psychophysical studies involving the pitch height and pitch strength of iterated ripple noise, the dominance region of pitch, the effect of phase on pitch height and pitch strength, pitch of inharmonic stimuli, and of sinusoidally amplitude modulated noise. Simulation results indicate that changes in the interspike interval statistics of populations of Chop-S units compare well with changes in the pitch perceived by humans. It is proposed that Chop-S units in the ventral cochlear nucleus may play an important role in pitch extraction: They can convert a purely temporal pitch code as observed in the auditory nerve into a temporal place code of pitch in populations of cochlear-nucleus, Chop-S with different characteristic frequencies, and chopping rates. Thus, populations of cochlear-nucleus Chop-S units, together with their target units presumably located in the inferior colliculus, may serve to establish a stable rate-place code of pitch at the level of the auditory cortex.  相似文献   

6.
This paper describes a neurocognitive model of pitch segregation in which it is proposed that recognition mechanisms initiate early in auditory processing pathways so that long-term memory templates may be employed to segregate and integrate auditory features. In this model neural representations of pitch height are primed by the location and pattern of excitation across auditory filter channels in relation to long-term memory templates for common stimuli. Since waveform driven pitch mechanisms may produce information at multiple frequencies for tonal stimuli, pitch priming was assumed to include competitive inhibition that would allow only one pitch estimation at any time. Consequently concurrent pitch information must be relayed to short-term memory via a parallel mechanism that employs pitch information contained in the long-term memory template of the chord. Pure tones, harmonic complexes and two pitch chords of harmonic complexes were correctly classified by the correlation of templates comprising auditory nerve excitation and off-frequency inhibition with the excitation patterns of stimuli. The model then replicated behavioral data for pitch matching of concurrent vowels. Comparison of model outputs to the behavioral data suggests that inability to recognize a stimulus was associated with poor pitch segregation due to the use of inappropriate pitch priming strategies.  相似文献   

7.
While numerous studies on infant perception have demonstrated the infant's ability to discriminate sounds having different frequencies, little research has evaluated more sophisticated pitch perception abilities such as perceptual constancy and perception of the missing fundamental. In the present study 7-8-month-old infants demonstrated the ability to discriminate harmonic complexes from two pitch categories that differed in pitch by approximately 20% (e.g., 160 vs 200 Hz). Using a visually reinforced conditioned head-turning paradigm, a number of spectrally different tonal complexes that contained varying harmonic components but signaled the same two pitch categories were presented. After learning the basic pitch discrimination, the same infants learned to categorize spectrally different tonal complexes according to the pitches signaled by their fundamental frequencies. That is, the infants showed evidence of perceptual constancy for the pitch of harmonic complexes. Finally, infants heard tonal complexes that signaled the same pitch categories but for which the fundamental frequency was removed. Infants were still able to categorize the harmonic complexes according to their pitch categories. These results suggest that by 7 months of age infants show fairly sophisticated pitch perception abilities similar to those demonstrated by adults.  相似文献   

8.
Optimum processor theory successfully accounts for earlier pitch data by including the constraint that component tones in a complex stimulus are estimated as successive harmonics. This constraint gives the paradoxical prediction that a periodic complex tone comprising nonsuccessive harmonics cannot evoke periodicity pitch corresponding to its period. Most published data from pitch-shift experiments imply the necessity for this constraint. New periodicity pitch experiments on pitch shift and musical interval recognition were performed which prove that the theoretical constraint is not generally true. New and old data are reconciled by replacing the maximum likelihood estimation of the theory with maximum posterior probability estimation and removing the successive harmonic constraint. Periodicity pitch is estimated by optimizing the match between the aurally measured frequencies of stimulus components and a general harmonic template over some a priori expected pitch range. The new, more general, formulation reduces in many experimental situations to the successive harmonic constraint as a special case.  相似文献   

9.
Effects of signal envelope on the pitch of short sinusoidal tones   总被引:1,自引:0,他引:1  
The pitch of short sinusoidal tones with exponentially rising or decaying envelopes is judged higher than the pitch of a gated tone of the same frequency, duration, and energy. The upward pitch shift depends on the rise or decay rate, the intensity, and the frequency. The effect, which requires a nonlinearity in the auditory system, cannot be adequately explained by existing models of hearing. Control experiments on pitch matching for short tones of varying duration and varying intensity are described. These suggest that envelope-induced pitch effects are linked to changes in average intensity, so that they are essentially the same as intensity-induced pitch changes. A model based on these considerations is proposed.  相似文献   

10.
Two sounds with the same pitch may vary from each other based on saliency of their pitch sensation. This perceptual attribute is called "pitch strength." The study of voice pitch strength may be important in quantifying of normal and pathological qualities. The present study investigated how pitch strength varies across normal and dysphonic voices. A set of voices (vowel /a/) selected from the Kay Elemetrics Disordered Voice Database served as the stimuli. These stimuli demonstrated a wide range of voice quality. Ten listeners judged the pitch strength of these stimuli in an anchored magnitude estimation task. On a given trial, listeners heard three different stimuli. The first stimulus represented very low pitch strength (wide-band noise), the second stimulus consisted of the target voice and the third stimulus represented very high pitch strength (pure tone). Listeners estimated pitch strength of the target voice by positioning a continuous slider labeled with values between 0 and 1, reflecting the two anchor stimuli. Results revealed that listeners can judge pitch strength reliably in dysphonic voices. Moderate to high correlations with perceptual judgments of voice quality suggest that pitch strength may contribute to voice quality judgments.  相似文献   

11.
Two models for pitch discrimination of harmonic complex sounds are discussed, a multiple-band probability summation model using comparisons among component frequencies, and a model in which residue pitches are compared. The second model is based on Goldstein's optimum-processor pitch theory [J. Acoust. Soc. Am. 54, 1496-1516 (1973)], and is distinguished from the multiple-band model by an internal noise process. Pitch difference limens from 2I2AFC tasks show that when the test signals comprise corresponding harmonics, relative pitch difference limens are less than the smaller relative difference limens for the component frequencies, which is consistent with the multiple-band model. The absence of corresponding harmonics significantly reduces relative pitch discriminability; this effect supports the model on Goldstein's theory. It appears that residue pitch comparisons are not used for pitch discrimination between sounds with corresponding components; rather, comparisons based on residue pitch are only employed where there are no common resolved components in the signals to be discriminated.  相似文献   

12.
Sequences of rapidly occurring sounds that differ from each other are often perceptually segregated into "streams" within which the range of differences is smaller [Bregman and Campbell, J. Exp. Psychol. 89, 244-249 (1971)]. Early research on streaming implied it to be pitch dominated, but Wessel [Comput. Music J. 3, 45-52 (1979)] demonstrated that timbre differences could also bring about segregation. In the present study, pitch and timbre attributes were put in competition in four-tone sequences of the form: T2P1-TmP1-T2Pn-TmPn, with the first pair assigned pitch P1 but different timbres T2 and Tm, and the second pair pitch Pn, and similarly contrasted timbres. Six listeners were asked to indicate whether perceived grouping of 49 such sequences was based on pitch proximity, timbre similarity, or ambiguous percepts not dominated by either cue. Results confirm that timbre can segregate sequences and imply that timbre and pitch compete in perceptually organizing complex sequences. Because timbre differences were provided by varying the locus of four equal-amplitude harmonics, and pitch differences were provided by varying their relative spacing, it is suggested that the tradeoffs observed may actually arise due to differences in perceived salience of "spectral pitch" and "virtual pitch" [Terhardt, J. Acoust. Soc. Am. 55, 1061-1069 (1974)] dependent on relative changes in spectral locus and spectral spacing over time.  相似文献   

13.
Reports using a variety of psychophysical tasks indicate that pitch perception by hearing-impaired listeners may be abnormal, contributing to difficulties in understanding speech and enjoying music. Pitches of complex sounds may be weaker and more indistinct in the presence of cochlear damage, especially when frequency regions are affected that form the strongest basis for pitch perception in normal-hearing listeners. In this study, the strength of the complex pitch generated by iterated rippled noise was assessed in normal-hearing and hearing-impaired listeners. Pitch strength was measured for broadband noises with spectral ripples generated by iteratively delaying a copy of a given noise and adding it back into the original. Octave-band-pass versions of these noises also were evaluated to assess frequency dominance regions for rippled-noise pitch. Hearing-impaired listeners demonstrated consistently weaker pitches in response to the rippled noises relative to pitch strength in normal-hearing listeners. However, in most cases, the frequency regions of pitch dominance, i.e., strongest pitch, were similar to those observed in normal-hearing listeners. Except where there exists a substantial sensitivity loss, contributions from normal pitch dominance regions associated with the strongest pitches may not be directly related to impaired spectral processing. It is suggested that the reduced strength of rippled-noise pitch in listeners with hearing loss results from impaired frequency resolution and possibly an associated deficit in temporal processing.  相似文献   

14.
Relying on a corpus of thirty narrative discourses,the roles of pitch and duration of prosodic words in sentence accent were studied in discourse context.At first,the pitch was normalized.Then according to the pitch range,the sentence and prosodic word were classified into three ranks of strengthened,normal and weakened respectively.In the same time the sentence accent was classified into two levels of primary and secondary by perceptual evaluation. The results showed that the relative pitch range of prosodic words in opposition to sentence contributed dominantly to sentence accent.Furthermore,the roles of pitch and duration in sentence accent were affected interactively by the rank of sentence and prosodic words.In normal prosodic words,primary sentence accents were realized by the mutual performance of pitch and duration while secondary sentence accents mainly depended on the variation of pitch. In strengthened prosodic words,the role of duration in sentence accent was more significant when the pitch range of the sentence was more compressed.Finally,it was found that the correlation between pitch and duration was influenced primarily by the strength of prosodic words,and in weakened,normal and strengthened prosodic words,the correlations between pitch and duration were positive,null,and negative respectively.  相似文献   

15.
Temporal models of pitch and harmonic segregation call for delays of up to 30 ms to cover the full range of existence of musical pitch. To date there is little anatomical or physiological evidence for delays that long. We propose a mechanism by which delays may be synthesized from cross-channel phase interaction. Phases of adjacent cochlear filter channels are shifted by an amount proportional to frequency and then combined as a weighted sum to approximate a delay. Synthetic delays may be used by pitch perception models such as autocorrelation, segregation models such as harmonic cancellation, and binaural processing models to explain sensitivity to large interaural delays. The maximum duration of synthetic delays is limited by the duration of the impulse responses of cochlear filters, itself inversely proportional to cochlear filter bandwidth. Maximum delay is thus frequency dependent. This may explain the fact, puzzling for temporal pitch models such as autocorrelation, that pitch is more salient and easy to discriminate for complex tones that contain resolved partials.  相似文献   

16.
Multichannel, auditory models have been repeatedly used to explain many aspects of human pitch perception. Among the most successful ones are models where pitch is estimated based on an analysis of periodicity in the simulated auditory-nerve firing. This periodicity analysis is typically implemented as a running autocorrelation, i.e., the autocorrelation is calculated within a temporal window which is shifted along the time axis. The window was suggested to have an exponential decay with time-constant estimates between 1.5 and 100 ms. The window length determines the minimal integration time of pitch extraction. The present experiments are designed to quantify the temporal window of pitch extraction using regular-interval noises (RINs). RINs were generated by concatenating equal-duration noise samples which produce a pitch corresponding to the reciprocal of the sample duration when the samples are identical (periodic noise). When the samples are independent, the stimulus is Gaussian noise and produces no pitch. Using RIN stimuli where periodic portions interchange with aperiodic portions, it is shown that the temporal window of pitch extraction cannot be modeled using a single time constant but that the size of the temporal window depends on the pitch itself.  相似文献   

17.
Periodicity pitch for complex tones has been quantitatively accounted for by a two-stage process of Fourier-frequency analysis subject to random errors and significant nonlinearities, followed by an harmonic pattern recognizer that makes an optimum probabilistic estimate of the fundamental period of musical and speech sounds. The theory predicts that periodicity pitch is a multimodal probabilistic function of a given stimulus. A clear and empirically supported distinction is made between limitations on the pitch mechanism caused by the stochastic nature of aural frequency representation and by the deterministic resolution bandwidths of aural frequency analysis. This model was developed earlier [J. L. Goldstein, J. Acoust. Soc. Am 54, 1496-1516 (1973)] to account for probabilistic data on pitch errors [A. J. M. Houtsma and J. L. Goldstein, J. Acoust. Soc. Am. 51, 520 (1972)] measured with periodic stimuli comprising two successive harmonics. This paper presents new predictions by the theory that were calculated, with computer simulation where needed, for known probabilistic pitch data from stimuli comprising three to six successive harmonics. Predicted pitch errors increase with increasing errors in estimating the frequencies of stimulus harmonics and decrease as more harmonics are added to the stimulus. Optimum processor theory fully accounts for the multicomponent pitch data on the basis of similar errors in estimating component stimulus frequencies as reported earlier, thus providing further evidence for the optimum probabilistic basis of aural signal processing in pitch of complex tones.  相似文献   

18.
The pitch strength of rippled noise and iterated rippled noise has recently been fitted by an exponential function of the height of the first peak in the normalized autocorrelation function [Yost, J. Acoust. Soc. Am. 100, 3329-3335 (1996)]. The current study compares the pitch strengths and autocorrelation functions of rippled noise (RN) and another regular-interval noise, "AABB." RN is generated by delaying a copy of a noise sample and adding it to the undelayed version. AABB with the same pitch is generated by taking a sample of noise (A) with the same duration as the RN delay and repeating it to produce AA, and then concatenating many of these once-repeated sequences to produce AABBCCDD.... The height of the first peak (h1) in the normalized autocorrelation function of AABB is 0.5, identical to that of RN. The current experiments show the following: (1) AABB and RN can be discriminated when the pitch is less than about 250 Hz. (2) For these low pitches, the pitch strength of AABB is greater than that for RN whereas it is about the same for pitches above 250 Hz. (3) When RN is replaced by iterated rippled noise (IRN) adjusted to match the pitch strength of AABB, the two are no longer discriminable. The pitch-strength difference between AABB and RN below 250 Hz is explained in terms of a three-stage, running-autocorrelation model. It is suggested that temporal integration of pitch information is achieved in two stages separated by a nonlinearity. The first integration stage is implemented as running autocorrelation with a time constant of 1.5 ms. The second model stage is a nonlinear transformation. In the third model stage, the output of the nonlinear transformation is long-term averaged (second integration stage) to provide a measure of pitch strength. The model provides an excellent fit to the pitch-strength matching data over a wide range of pitches.  相似文献   

19.
20.
利用微型麦克风和基于计算机声卡的虚拟频谱分析仪,实时采集水杯受击时的信号频谱图,通过对频谱图的分析获得水杯受击时的音调.利用Matlab对数据进行拟合得出水杯中不同体积水与受击时音调的关系.同时,研究了不同敲击点对音调的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号