首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Energy levels in 40Ca up to 10.2 MeV have been studied in the neutron pickup reaction 41Ca(τ, α)40Ca with 20 MeV bombarding energy. Thirty excited states have been identified and angular distributions have been measured in the interval from 5° to 40° by means of a split-pole magnetic spectrometer. The angular distributions together with DW calculations have been used to extract ln values and spectroscopic factors. The ln = 2 strength distribution for the f72d32?1 particle-hole levels is compared to the lp = 3 strength distribution from pr stripping data.  相似文献   

2.
The 91Zr(d, 3He) reaction was studied at a deuteron energy of 28 MeV. Angular distributions were measured from 13° to 47°; lp values were extracted for the prominent lines of 90Y. The lp values and transition strengths were determined by DWBA analysis. The angular distributions for the p12)(νd52) doublet (g.s. and 0.20 MeV state) exhibit the characteristic l = 1 shape. States at 1.42, 1.57, 1.64 and 1.81 MeV were also populated strongly in the (d, 3He) reaction; the 1.42, 1.57 and 1.81 MeV levels contain l= 1 transition strength and are most likely members of the p32?1)(νd52) multiplet. The 2.03 MeV state has a characteristic l = 3 angular distribution and is suggested to be the only member of the f32?1)(νd52) sextet to be unambiguously observed in this study, most probably the 5? or 4? member. The members of the g52)(νd92) sextet were populated weakly (less than 100 μb/sr) in this reaction.  相似文献   

3.
The nucleus 11B has been studied over the excitation energy range from 8.5 MeV to 21.5 MeV with the 9Be(3He, p)11B / reaction at / E3He = 38 MeV. The analogs of the parent states in 11Be have been located at 12.56, 12.92, 14.40, 16.44, 17.69, 18.0, 19.15 and 21.27 MeV. A complementary measurement with the 9Be(α, d)11B reaction at Eα = 48 MeV demonstrates that the 16.44, 17.69, 18.0 and 19.15 MeV resonances have rather pure isospin Tf = 32. The 14.40 MeV state is a strongly isospin-mixed analog of the 52+1.78 MeV state in 11Be. It is argued that spin S = 1 transfer is involved in the excitation of the 16.44 MeV state and its 3.887 MeV parent in 11Be in a two-step stripping process. The Tf = 12 states and the lowest three Tf = 32 states are compared with the predictions of DWBA utilizing shell-model form factors. It is concluded that the Tf = 12 strength is more strongly fragmented than is implied by the calculations of Teeters and Kurath.  相似文献   

4.
Differential cross sections for neutrons scattered from 11B have been measured for 2.2 MeV < En < 4.5 MeV. The differential cross section σ(θ) is fitted reasonably well by R-matrix parameters for broad states in 12B with assignments 1 ? and (1) + at excitation energies Ex = 5.8 and 6.8 MeV respectively. The broad 1 ? state has not been previously observed and is believed to be the 1 ? member of the 1p32?11d52 particle-hole multiplet predicted to exist by earlier shell model calculations. Its existence completes the identification of all of the levels of this multiplet (3 ?, 2 ?, 4 ?, 1 ?). The broad (1)+ level at Ex = 6.8 MeV has not been previously observed. States at excitation energies Ex = 5.61, 5.73 and 6.6 MeV have been assigned spins and parities of 3+, 3? and (1)+ respectively. These states had previously been assigned spins of 2, 3 and ≧ 1 respectively. Work on T = 1 states in 12C1 has been compared with the present work.  相似文献   

5.
The nuclear structure of 5125Mn was studied by γ-ray spectroscopy in the 54Fe(p, α)51 Mn reaction (Ep = 9.0–13.2 MeV) and the 14N+39K, 16O+40Ca and 14N+40Ca fusion-evaporation reactions (Ebeam = 36 MeV). In the 54Fe(p, αγ)51Mn reaction γ-rays were detected in coincidence with α-particles emitted near 180°; mean lifetimes and γ-ray mixing and branching ratios were deduced from Doppler shift attenuation and α-γ angular correlation measurements, respectively. Definite spin assignments are: 237 and 2416 keV, Jπ = 72?; 1140 keV, 92?; 1488 keV, 112?; 1825 and 2140 keV, 32?. The results for other states below 3 MeV are consistent with the existence of rotational bands (/kh2/2/OI/t~ 95 keV) built on the (32+) 1817 keV and 12+ 2276 keV hole states. The various measurements together with an earlier value for the lifetime of the first-excited state determine unambiguously the B(M1) and B(E2) values for all of the decay branches of the 72?, 92? and 112? lowest three excited states. From the γ-singles and γ-γ coincidence observations with fusion-evaporation reactions, the yrast cascade proceeds through these three states and higher states at 2957, 3250,3680 and 4139 keV which are suggested to have Jπ = 132?, 152?,152? and 192?, respectively. The various experimental results for the 52? → (192?) yrast states are in good overall agreement with shell-model calculations in the (f721 space.  相似文献   

6.
Differential cross sections were measured for 46Ti(p, p) and 46Ti(p, p1) at four angles between Ep = 1.5 and 3.1 MeV, with an overall energy resolution of about 300 eV. Spins, parities, total and partial widths were extracted for 144 resonances. Six analogue states were identified. The s-wave states have expected spacing and width distributions, while the p12 states behave anomalously. The s12, p12 and p32 strength functions were determined.  相似文献   

7.
The (d, 3He) and (α, t) proton transfer reactions on 91Zr were studied at incident energies of 24.3 and 35.4 MeV, respectively. Angular distributions were measured from 6° to 50° (90Y) and 60° (92Nb). High detection efficiency and good energy resolution were obtained by using a magnetic spectrograph in connection with a multiwire proportional chamber. For the low-lying multiplet levels in both nuclei angular momentum transfers and spectroscopic factors were determined by DWBA analysis. In 92Nb the states at 0, 0.135, 0.29, 0.36 and the sum of the states at 0.48 and 0.50 MeV show typical l = 4 shapes. They belong to the (1g92π)(2d52ν) sextet. The corresponding multiplet in 90Y is weakly populated ( ≦ 20 μb/sr), and l = 4 shapes are found for the levels at 0.68, 0.78, 0.95, 1.05 and 1.30 MeV proving previous assignments. The members of the low-lying (2p12π)(2d52ν) doublets in 90Y and 92Nb exhibit a characteristic l = 1 angular shape. The levels at 1.42, 1.57, 1.64, 1.76 and 1.81 MeV in 90Y are excited both by l = 1 and l = 3 resulting from a strong mixing of the (2p32π)?1(2d52ν) and (1f52π)?1 (2d52ν) multiplets. Only the level at 2.03 MeV displays a pure l = 3 shape. From the spectroscopic information on the (2p12π)(2d52ν) and (1g92π)(2d52ν) multiplets in 90Y and 92Nb the g.s. configuration mixing in 91Zr is deduced.  相似文献   

8.
The 58Ni(τ, α)57Ni reaction has been studied at 25 MeV incident energy. Angular distributions have been measured from 5° to 50° with a split-pole spectrometer up to 13.5 MeV excitation energy. A local zero-range DWBA analysis has been carried out, allowing l-assignments for about eighty levels, most of them previously unknown. An isospin-dependent potential has been used in the calculation of the neutron form factor for both T<and T> states, and the C2S values deduced using this procedure are compared to those obtained with the usual separation energy method. Analog states of eleven 57Co levels have been identified and the eventuality for isospin mixing in 57Ni has been discussed. A sum rule analysis has been carried out and energy centroids of hole states have been determined. About 60% of the 1d52and 2s12T< strengths and the full 1d32 and 1f72 hole strengths are observed. It is shown that the two excess neutrons in the 58Ni ground state mainly populate the 2p32, 1f52and 2p12 orbitals, whereas the occupancy number of the 1g92 subshell is found to be smaller than 0.1%. Some non-pickup angular distributions have also been observed and a CRC analysis assuming two-step processes in the (τ, α) reaction and weak-coupling wave functions for final states has been attempted. Assignments of Jπ values are proposed for four 57Ni levels, based on this analysis.  相似文献   

9.
The 42Ca(α, 3He)43Ca reaction has been studied at 36 MeV incident energy. Angular distributions have been measured from 4° to 42° using a split-pole spectrometer and position sensitive Si detectors, for about 40 levels located up to 6 MeV excitation energy. A local zero-range DWBA analysis has been carried out; l = 3 and 4 assignments are tentatively proposed for levels located above 4 MeV excitation energy, indicating a strong fragmentation of the 1f52 strength between 4 and 6 MeV and the location of the main component of the 1g92 strength above 6 MeV. A number of weakly excited levels cannot be reproduced by DWBA analysis. Their angular distributions have been compared with the results of coupled-reaction-channel calculations assuming two-step excitation of weak coupling states with a [42Ca1 ? f72 structure. A reasonable agreement has been obtained, confirming that the two-step process cannot be neglected in the analysis of the (α, 3he) reaction.  相似文献   

10.
The intrinsic structure of 168Tm has been studied using the (3He, d) and (α, t) proton stripping reactions as well as the (d, t) and (3He, α) neutron pick-up reactions. The beams of 24 MeV 3He particles, 25 MeV α-particles and 12 MeV deuterons were obtained from the McMaster tandem Van de Graaff accelerator. The reaction products were analyzed with an Enge-type magnetic spectrograph and detected with photographic emulsions. The spectra have been interpreted in terms of the coupling of an odd proton and an odd neutron, each moving independently in a spheroidal potential, which gives rise to intrinsic two-quasiparticle states with K = ¦Ω1±Ω2¦. The identification of the intrinsic states was made by comparing the experimental cross-section patterns with those predicted with the aid of Coriolis coupling and distorted-wave Born approximation (DWBA) calculations. Rotational bands superimposed on the Kπ = 3+ and Kπ = 4+, {72+ [633]n±12+ [411]p} configurations, the first of which is the ground state, ha been observed in the spectra of all four reactions. New assignments have been made for configurations resulting from coupling the 12? [541], 72+ [404], 54+ [402] and 12? [530] p to the 72+ [633] neutron state. The neutron pick-up measurements confirmed the earlier assignments based on (d, t) reaction studies and suggested tentative assignments for the {12+ [400]n±12+ [411]p} and {32+ [402]n±12+ [411]p}  相似文献   

11.
Differential cross sections were measured for 50Ti(p, p) at four angles for Ep = 1.83 to 2.97 MeV, with an overall energy resolution of about 350 eV. Spins, parities and total widths were extracted for 212 levels. An energy region near Ep = 1.37 MeV was also examined in order to study the analogue of the ground state of 5Ti. Coulomb energies and spectroscopic factors were determined for the analogues of the ground and first excited states of 51Ti. The latter analogue was highly fragmented. The s-wave spacing and width distributions were analyzed and the number of missing levels estimated. The s12 and p12 proton strength functions were determined.  相似文献   

12.
Energy levels in 42Ca up to 7.8 MeV have been studied in the neutron capture reaction 41Ca(d, p)42Ca with 12 MeV bombarding energy. Ninety-four excited states have been identified and angular distributions have been measured in the interval from 5° to 110° by means of a broad-range magnetic spectrograph. The angular distributions together with DW calculations have been used to determine In values and spectroscopic factors. The f72 strength sum agrees with shell-model expectations if the f72 spectroscopic factors are renormalized by 10.75, in line with other f72. transfer experiments on 40Ca and 41Ca. A similar renormalization of the ln = 1 spectroscopic factors brings this strength sum in accordance with the shell-model calculations. The effective (f722) matrix elements for 42Ca are compared with the corresponding matrix elements of 42Sc and 48Sc. The differences between the three sets of matrix elements are of the order of a few hundred keV or less. The monopole centroid energy of the (f72)2 multiplet is shifted downwards in the mass-42 nuclei compared to 48Sc, possibly indicating the importance of the monopole pairing force near 40Ca.  相似文献   

13.
An accurate measurement of dσdΩ?p → ηn) at 1531 MeV total energy (expanded) up to l = 4 Legendre polynomials) requires reconsideration of previous angular distribution fits which were expanded only up to l = 2 and of subsequent partial-wave analysis. An energy-dependent partial-wave analysis has been performed here for pη1 up to 450 MeV/c. In addition to the well-known S11 (1520 MeV) resonance, either the P11 (1532 MeV) or the P13 (1530 MeV) resonance is found to be strongly coupled to the η-n channel. In both cases, the P11 (1729 MeV) resonance is needed as is the weakly coupled D13 (1525 MeV) resonance. The decay states in the ηn channelare compared to the SU(3) and SU(6)W predictions.  相似文献   

14.
Excitation functions of the capture reaction 12C(p, γ0)13N have been obtained at θγ = 0° and 90° and Ep = 150–2500 keV. The results can be explained if a direct radiative capture process, E1(s and d → p), to the ground state in 13N is included in the analysis in addition to the two well-known resonances in this beam energy range [Ep = 457(12+) and 1699 (32?) keV]. The direct capture component is enhanced through interference effects with the two resonance amplitudes. From the observed direct capture cross section, a spectroscopic factor of C2S(l = 1) = 0.49 ± 0.15 has been deduced for the 12? ground state in 13N. Excitation functions for the reaction 12C(p,γ1p1)12C have been obtained at θγ = 0° and 90° and Ep = 610–2700 keV. Away from the 1699 keV resonance the capture γ-ray yield is dominated by the direct capture process E1 (p → s) to the 2366 (12+) keV unbound state. Above Ep = 1 MeV, the observed excitation functions are well reproduced by the direct capture theory to unbound states (bremsstrahlung theory). Below Ep = 1 MeV, i.e., Ep → 457 keV, the theory diverges in contrast to observation. This discrepancy is well known in bremsstrahlung theory as the “infrared problem”. From the observed direct capture cross sections at Ep ? 1 MeV, a spectroscopic factor of C2S(l = 0) = 1.02 ± 0.15 has been found for the 2366 (12+) keV unbound state. A search for direct capture transitions to the 3512 (32?)and 3547 (52+) keV unbound states resulted in upper limits of C2S(l = 1) ≦ 0.5 and C2S(l = 2) ? 1.0, respectively. The results are compared with available stripping data as well as shell-model calculations. The astrophysical aspect of the 12C(p, γ0)13N reaction also is discussed.  相似文献   

15.
The results of high-resolution studies of the 91Zr(d, p) reaction at Ed = 12 MeV and the 90Zr(t, p) reaction at Et = 11.85 MeV are presented. Absolute cross sections have been measured for both reactions and (d, p) spectroscopic factors determined. A comparison of these results with earlier data has been made, and although many of the previous assignments have been confirmed, many new features concerning the structure of 92Zr have been discovered. Shell-model calculations have been performed for 91Zr and 92Zr using a neutron space which includes the 2d52, 3s12, 2d32, 1g72 and 1h112 orbits and a proton space comprising the 1g92 and 2p12 orbits. Realistic proton-neutron and neutron-neutron interactions based on the Sussex matrix elements were used in the calculations. Spectroscopic factors have been calculated for the 90Zr(d, p) and 91Zr(d, p) reactions and cross sections calculated for the 90Zr(t, p) reaction. In general, good agreement between the theoretical and the experimental results has been obtained.  相似文献   

16.
The doubly odd nucleus 140Pr has been investigated by means of the 141Pr(d, t)140Pr and 140Ce(p, nγ)140Pr reactions. Twenty-eight levels, up to 1300 keV excitation, were observed in the pickup study. DWBA analysis was used to determine l-values and spectroscopic factors for all but a few which are very weakly populated. Gamma-ray angular distributions, measured at Ep = 4.78 MeV for the five strongest γ-rays, show appreciable nuclear alignment and demonstrate the feasibility of such experiments in this mass region. Taken together, the two studies have permitted the identification of the 12 levels expected from the low-lying (π2d52ν2d32?1), (π2d52ν3s12?1), (π1g72ν2d32?1) and (π1g72ν3s12?1) configurations. Tenta assignments for the strong odd-parity states are suggested on the basis of their spectroscopic factors.  相似文献   

17.
The γ-decay of the deeply-bound hole states in 111Sn has been investigated at 32 MeV incident energy by means of the 112Sn(3He, αγ) reaction. The α-particles emitted near 0° were detected in a Si counter located at the image plan of the superconducting solenoidal spectrometer SOLENO. The γ-rays in coincidence with the α-particles were detected by two Ge(Li) detectors located at 90° and 142° with respect to the beam direction, respectively. Energies, spins and decay schemes have been established for the low-lying states up to 2.5 MeV excitation energy in 111Sn. The γ-decay of the broad bump, located around 4.2 MeV and previously attributed to neutron pick-up from the inner 1g92, 2p12, and 2p32 neutron. Subshells, reveals the importance of quasiparticle-phonon m the spreading mechanism of the inner-hole strengths. The 1g92 and 2p strength functions have been deduced from the α-decay of the enhanced structures (3 ≦ Ex≦ 8 MeV). They are compared to the ones measured in previous inclusive neutron pick-up experiments and to those calculated in the framework of the quasiparticle-phonon nuclear model.  相似文献   

18.
The reaction 12C(7Li, t)16O has been studied at E(7Li) = 34 MeV with the LASL tandem accelerator and QDDD magnetic spectrometer. Angular distributions to levels with Ex < 11 MeV have been obtained from 0° to 90°, including 0°. The results have been analyzed with finite-range distorted-wave Born approximation theory. The α-particle spectroscopic factors and reduced widths obtained are compared with those calculated with group theory (SU(3)) and other models. The analysis of data for the 7.1 and 9.6 MeV Jπ = 1? levels, which are of great importance in stellar helium buring, yields a ratio, R, of dimensionless reduced α-widths θ2a(7.1 MeV)θ2a(9.6 MeV) = 0.35b ± 0.13. The observed line width of the 9.6 MeV level (Γc.m. = 390 ± 60 keV) is less than the accepted value (Γc.m. = 510 ± 60 keV) and implies θ2a(9.6 MeV) ≈ 0.6. These results as well as data for the 6.92 MeV Jπ = 2+ and 10.35 MeV Jπ = 4+ “α-cluster” states indicate 0.09 < θ2a(7.1 MeV) < 0.33 with a mean value θ2a(7.1 MeV) = 0.14 ± 0.04. The implication for stellar helium burning is discussed.  相似文献   

19.
The cross section, vector analyzing power, and proton polarization have been measured for the ln = 0 reaction 116Sn(d, p)117Sn(g.s.) at 8.22 MeV. In addition, cross section and analyzing power data have been obtained at 8.22 MeV for 116Sn(d, d)116Sn and for 116Sn(d, p)117Sn leading to excited states of 117Sn at 0.159, 0.317, 1.020, 1.179, 1.308 and 1.497 MeV. The cross section and analyzing power for 117Sn(p,p)Sn and for 117Sn(p, d)116Sn leading to the 1.294 MeV state of 116Sn have also been measured at 12.91 MeV. The data for 116Sn(d, p)117Sn(g.s.) have been used to separate the contributions to the analyzing power arising from spin-dependent forces in the proton and deuteron channels. A similar analysis is presented for an ln = 0 90Zr(d, p)91Zr transition at 11 MeV. Optical-model analyses have been performed for the elastic scattering data. The reaction data have been compared with distorted-wave calculations in order to investigate the validity of various deuteron potentials, as well as to extract spectroscopic information.  相似文献   

20.
The 54Fe(3He, t)54Co reaction has been studied at 70 MeV with an energy resolution around 70 keV (FWHM). The triton spectra are characterized by sharp peaks up to 10 MeV excitation energy superimposed on a continuum. Most of the sharp peaks have a forward-peaked angular distribution and 38 peaks or groups of peaks are found to have an angular distribution corresponding to an angular momentum transfer of 2. Model considerations lead to the conclusion that most of these states are 1+ states. A shell-model calculation with parameters that account for the Gamow-Teller strength distribution in 48Ca-48Sc divides the β-strength in 54Co in a ratio 5.7:6.8:1.3 for the T = 0, 1 and 2 states. A comparison is made with the 1+ spectrum in 54Mn (T = 2 states) and a tentative assignment of T = 2 states in 54Co is reached. The cross section has been calculated for the 0+, 1+ and 3+ states in 54Co assuming a pure (πf72?1νf72?1) configuration finite-range DWBA is used and the conclusions are that the (3He, α, t) and (3He, d, t) processes give significant contributions to the cross sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号